Incorporating Post Tensioning for Additional Support

Incorporating Post Tensioning for Additional Support

Advanced techniques for repairing foundation cracks, including carbon fiber reinforcement and helical piers.

Evaluation of residential foundation issues that may benefit from post tensioning


When it comes to residential foundations, ensuring structural integrity is paramount. Home inspections help identify foundation issues before they worsen foundation repair service areas concrete slab. One innovative solution that has gained traction in recent years is post tensioning. This technique involves applying compressive stress to concrete after it has been poured, significantly enhancing its strength and durability. But how do you evaluate whether a residential foundation would benefit from post tensioning? Let's delve into the key considerations.

Firstly, assessing the soil conditions is crucial. Foundations built on expansive soils, which expand and contract with moisture changes, are particularly prone to issues like cracking and settling. Post tensioning can counteract these movements by applying continuous pressure, thereby minimizing the impact of soil shifts on the foundation.

Another factor to consider is the foundation's design and construction. Traditional foundations may lack the reinforcement needed to withstand certain stresses, especially in areas prone to seismic activity or where heavy loads are present. Post tensioning offers a retrofitting solution, providing additional support where it's needed most.

Furthermore, evaluating the existing foundation's condition is essential. Signs of distress such as cracks, uneven settling, or bowing walls may indicate underlying issues that post tensioning could address. By reinforcing the foundation with post tensioning cables, homeowners can mitigate these problems and prolong the lifespan of their property.

Additionally, cost considerations play a role in the decision-making process. While post tensioning may require an initial investment, it can ultimately save homeowners money in the long run by preventing costly repairs and structural failures down the line.

In conclusion, evaluating residential foundation issues that may benefit from post tensioning involves a comprehensive assessment of soil conditions, foundation design, existing condition, and cost-effectiveness. By addressing these factors, homeowners can make informed decisions about incorporating post tensioning for additional support, ensuring the stability and longevity of their homes.

Step-by-step guide on the post tensioning process for residential foundations


Sure! Here's a human-like, step-by-step guide on the post-tensioning process for residential foundations:

---

When it comes to ensuring the stability and durability of residential foundations, post-tensioning is a highly effective technique. This method involves the use of steel tendons that are tensioned after the concrete has been poured and allowed to set. Here's a straightforward, step-by-step guide to understanding the post-tensioning process for residential foundations.

1. **Design and Planning**:
Begin with a thorough design phase. Engineers will assess the soil conditions, load requirements, and structural needs of the residential building. This step ensures that the post-tensioning system is tailored to the specific demands of the project.

2. **Preparation of the Site**:
Clear the construction site and prepare it for foundation work. This includes excavating the area where the foundation will be laid and ensuring that the ground is level and stable.

3. **Installation of Ducts or Sheaths**:
Before pouring the concrete, install ducts or sheaths where the post-tensioning tendons will be placed. These ducts are typically made of plastic or metal and are positioned according to the design plans.

4. **Pouring the Concrete**:
Once the ducts are in place, pour the concrete into the foundation forms. It's crucial to ensure that the concrete is of high quality and is poured evenly to avoid any weaknesses in the structure.

5. **Curing the Concrete**:
Allow the concrete to cure for a specified period, usually around 24 to 48 hours. This curing time ensures that the concrete gains enough strength to support the tensioning process.

6. **Inserting the Tendons**:
After the concrete has cured, insert the steel tendons into the ducts. These tendons are typically made of high-strength steel and are crucial for providing the necessary tension.

7. **Tensioning the Tendons**:
Using hydraulic jacks, tension the steel tendons to the required force. This step is critical as it compresses the concrete, enhancing its strength and durability. The tensioning process is carefully monitored to ensure accuracy.

8. **Grouting the Ducts**:
Once the tendons are tensioned, the ducts are filled with grout. This grout protects the tendons from corrosion and helps transfer the tension force throughout the concrete.

9. **Final Inspection and Testing**:
Conduct a final inspection to ensure that all tendons are properly tensioned and the grout has been adequately applied. Perform any necessary tests to confirm the structural integrity of the foundation.

10. **Completion and Backfilling**:
With the post-tensioning process complete, backfill the site around the foundation. This step restores the landscape and prepares the site for further construction.

By following these steps, post-tensioning can significantly enhance the strength and longevity of residential foundations, providing additional support and peace of mind for homeowners.

Materials and equipment required for effective post tensioning in residential settings


Certainly! When it comes to incorporating post-tensioning for additional support in residential settings, having the right materials and equipment is crucial for achieving a safe and effective installation. Post-tensioning is a construction technique that involves the application of a compressive load to concrete after it has hardened, enhancing its strength and durability. This method is particularly beneficial in residential construction, where the added support can lead to longer-lasting structures with fewer cracks.

Firstly, the materials required for post-tensioning include high-strength steel tendons, which are the heart of the post-tensioning system. These tendons are typically made from pre-stressing steel, which can be either wires or strands, and are capable of withstanding significant tensile forces. Accompanying these tendons are duct materials, often made from high-density polyethylene (HDPE), which encase the tendons to protect them from corrosion and ensure they remain in the correct position during and after the concrete pour.

Anchorages and couplers are also essential components. Anchorages are used to secure the ends of the tendons, while couplers allow for the connection of tendon segments, facilitating the installation process in longer spans. Grout is another critical material, used to fill the ducts after the tendons have been tensioned. This not only protects the tendons from environmental factors but also helps transfer the compressive forces to the concrete.

In terms of equipment, hydraulic jacks are indispensable for the tensioning process. These jacks apply the necessary force to stretch the tendons, inducing the desired pre-stress in the concrete. Additionally, tendon stress indicators are used to monitor the tension being applied, ensuring it meets the design specifications. Wrenches and other hand tools are necessary for the secure installation of anchorages and couplers.

Lastly, safety equipment such as gloves, safety glasses, and hearing protection are vital to protect workers during the installation process. Given the high forces involved in post-tensioning, ensuring a safe working environment is paramount.

In conclusion, the successful incorporation of post-tensioning in residential settings relies on a combination of specialized materials and equipment. From high-strength steel tendons and protective ducts to hydraulic jacks and safety gear, each component plays a critical role in enhancing the structural integrity and longevity of residential buildings.

Safety measures and precautions to be taken during post tensioning operations


When it comes to construction projects, ensuring safety is paramount, especially during complex operations like post-tensioning. Post-tensioning is a method used to reinforce concrete structures by pre-stressing them, which involves tensioning steel tendons after the concrete has been poured and hardened. This technique enhances the structural integrity and load-bearing capacity of the concrete. However, it also introduces unique hazards that require careful attention to safety measures and precautions.

First and foremost, proper training is essential. All workers involved in post-tensioning operations must be thoroughly trained in the procedures, potential risks, and safety protocols. This includes understanding the equipment, recognizing warning signs, and knowing how to respond to emergencies. Continuous education and refresher courses can help maintain a high level of safety awareness among the workforce.

Personal protective equipment (PPE) is another critical aspect of safety during post-tensioning. Workers should wear appropriate PPE, including hard hats, safety glasses, high-visibility clothing, and steel-toed boots. Additionally, gloves and ear protection may be necessary depending on the specific tasks being performed. Ensuring that PPE is worn correctly and consistently can significantly reduce the risk of injuries.

Site preparation is also vital. Before commencing post-tensioning operations, the work area should be thoroughly inspected and prepared. This includes clearing the area of any unnecessary materials, ensuring adequate lighting, and setting up barriers to restrict access to the work zone. Proper signage should be posted to warn of potential hazards and to guide workers and visitors safely through the area.

During the post-tensioning process, it is crucial to follow manufacturer guidelines and industry standards meticulously. This includes using the correct tools and equipment, adhering to specified tensioning sequences, and monitoring the tensioning process closely. Any deviations from the established procedures can lead to structural failures or accidents.

Communication among the team is another key factor in maintaining safety. Clear and consistent communication ensures that everyone is aware of their roles and responsibilities. Regular safety meetings can help reinforce safety practices and provide a platform for workers to voice any concerns or suggest improvements.

Lastly, emergency preparedness is essential. Having a well-defined emergency response plan in place, including evacuation routes and first aid procedures, can make a significant difference in the event of an accident. Regular drills and inspections of emergency equipment ensure that everyone knows what to do and that the necessary tools are readily available.

In conclusion, incorporating post-tensioning for additional support in construction projects requires a comprehensive approach to safety. By prioritizing training, PPE, site preparation, adherence to guidelines, communication, and emergency preparedness, construction teams can mitigate risks and ensure a safer working environment.

Case studies showcasing successful residential foundation repairs using post tensioning


Certainly! Let's dive into the realm of residential foundation repairs with a focus on the ingenious application of post-tensioning. This method, often reserved for large-scale construction projects, has found its way into the residential sector with remarkable success. Here are a few case studies that exemplify the effectiveness of post-tensioning in bolstering residential foundations.

In a suburban neighborhood, a home built in the 1970s began to show signs of foundation distress. The owners noticed cracks in the walls and uneven floors, a common tale in areas with expansive soils. Traditional methods like underpinning were considered, but the homeowners were introduced to post-tensioning as a more innovative solution. By installing high-strength steel tendons beneath the foundation and tensioning them, the structural integrity was significantly enhanced. The result? A stable foundation with minimized future movement, and the homeowners were thrilled with the outcome.

Another compelling case is from a coastal town where a house was battling the dual challenges of soil erosion and saltwater corrosion. The foundation was weakening, posing a serious risk. Post-tensioning came to the rescue here as well. The technique not only provided the necessary uplift to counteract the erosion but also offered a resilient barrier against corrosive elements. The house now stands firm, defying the odds of its coastal environment.

In a third instance, a modern home with a sleek, open-plan design required a foundation repair that wouldn't compromise its aesthetic or structural harmony. Post-tensioning was the perfect fit. It allowed for a discreet yet powerful reinforcement, maintaining the home's contemporary appeal while ensuring its foundation could withstand the test of time.

These case studies underscore a critical point: post-tensioning is not just a solution for grand structures; it's a versatile, effective method for residential foundation repairs too. It offers a blend of strength, aesthetics, and longevity, making it a valuable tool in the arsenal of foundation repair techniques. As more homeowners become aware of its benefits, post-tensioning is likely to become a standard in residential construction and repair, ensuring homes stand tall and proud for generations to come.

Comparison of post tensioning with traditional foundation repair methods


When considering foundation repair methods, two primary approaches often come to the forefront: traditional methods and post-tensioning. Each has its own set of advantages and disadvantages, making the choice between them a critical decision for structural engineers and homeowners alike.

Traditional foundation repair methods typically involve techniques such as underpinning, where additional support is added beneath the existing foundation. This can be achieved through methods like installing piers or pushing the foundation back into its original position. These methods have been used for decades and are well-understood, offering a sense of reliability and familiarity. However, they can be invasive, requiring significant excavation around the structure, which can be both time-consuming and disruptive. Additionally, traditional methods may not always address the root cause of foundation issues, leading to potential recurrence of problems.

On the other hand, post-tensioning offers a more modern and innovative approach to foundation repair. This method involves the installation of steel tendons within the concrete, which are then tensioned to compress the concrete and enhance its structural integrity. Post-tensioning can be particularly effective in addressing issues related to settlement and cracking, providing a more uniform distribution of stress across the foundation. One of the key benefits of post-tensioning is its minimally invasive nature; it often requires less excavation compared to traditional methods, resulting in reduced disruption to the surrounding area. Furthermore, post-tensioning can offer long-term stability, potentially reducing the need for future repairs.

In comparing the two methods, it is evident that post-tensioning provides several advantages over traditional foundation repair techniques. Its ability to offer enhanced structural support with minimal disruption makes it an attractive option for many applications. However, the choice between post-tensioning and traditional methods should be based on a thorough assessment of the specific needs and conditions of the structure in question. Ultimately, both methods have their place in the realm of foundation repair, and the decision should be guided by factors such as cost, time constraints, and the desired level of structural enhancement.



A load-bearing wall or bearing wall is a wall that is an active structural element of a building, which holds the weight of the elements above it, by conducting its weight to a foundation structure below it.

Load-bearing walls are one of the earliest forms of construction. The development of the flying buttress in Gothic architecture allowed structures to maintain an open interior space, transferring more weight to the buttresses instead of to central bearing walls. In housing, load-bearing walls are most common in the light construction method known as "platform framing". In the birth of the skyscraper era, the concurrent rise of steel as a more suitable framing system first designed by William Le Baron Jenney, and the limitations of load-bearing construction in large buildings, led to a decline in the use of load-bearing walls in large-scale commercial structures.

Description

[edit]

A load-bearing wall or bearing wall is a wall that is an active structural element of a building — that is, it bears the weight of the elements above said wall, resting upon it by conducting its weight to a foundation structure.[1] The materials most often used to construct load-bearing walls in large buildings are concrete, block, or brick. By contrast, a curtain wall provides no significant structural support beyond what is necessary to bear its own materials or conduct such loads to a bearing wall.[2]

History

[edit]

Load-bearing walls are one of the earliest forms of construction.[3] The development of the flying buttress in Gothic architecture allowed structures to maintain an open interior space, transferring more weight to the buttresses instead of to central bearing walls. The Notre Dame Cathedral is an example of a load-bearing wall structure with flying buttresses.[4]

Application

[edit]

Depending on the type of building and the number of floors, load-bearing walls are gauged to the appropriate thickness to carry the weight above them. Without doing so, it is possible that an outer wall could become unstable if the load exceeds the strength of the material used, potentially leading to the collapse of the structure. The primary function of this wall is to enclose or divide space of the building to make it more functional and useful. It provides privacy, affords security, and gives protection against heat, cold, sun or rain.[5]

Housing

[edit]

In housing, load-bearing walls are most common in the light construction method known as "platform framing", and each load-bearing wall sits on a wall sill plate which is mated to the lowest base plate. The sills are bolted to the masonry or concrete foundation.[6]

A beam of PSL lumber installed to replace a load-bearing wall at the first floor of a three-story building.

The top plate or ceiling plate is the top of the wall, which sits just below the platform of the next floor (at the ceiling). The base plate or floor plate is the bottom attachment point for the wall studs. Using a top plate and a bottom plate, a wall can be constructed while it lies on its side, allowing for end-nailing of the studs between two plates, and then the finished wall can be tipped up vertically into place atop the wall sill; this not only improves accuracy and shortens construction time, but also produces a stronger wall.

Skyscrapers

[edit]
The Chicago Willis Tower uses a bundle of tube structures which, in turn, include numerous outer wall columns.

Due to the immense weight of skyscrapers, the base and walls of the lower floors must be extremely strong. Pilings are used to anchor the building to the bedrock underground. For example, the Burj Khalifa, the world's tallest building as well as the world's tallest structure, uses specially treated and mixed reinforced concrete. Over 45,000 cubic metres (59,000 cu yd) of concrete, weighing more than 110,000 t (120,000 short tons) were used to construct the concrete and steel foundation, which features 192 piles, with each pile being 1.5 m diameter × 43 m long (4.9 ft × 141 ft) and buried more than 50 m (160 ft) deep.[7]

See also

[edit]
  • Column – in most larger, multi-storey buildings, vertical loads are primarily borne by columns / pillars instead of structural walls
  • Tube frame structure – Some of the world's tallest skyscrapers use load-bearing outer frames – be it single tube (e.g. the old WTC Twin Towers), or bundled tube (e.g. the Willis Tower or the Burj Khalifa)

References

[edit]
  1. ^ "How to Identify a Load-Bearing Wall". Lifehacker. Retrieved 2020-06-26.
  2. ^ "Load-bearing wall". www.designingbuildings.co.uk. Retrieved 2020-06-26.
  3. ^ Montaner, Carme (2021-03-31). "8º Simposio Iberoamericano de Historia de la Cartografía. El mapa como elemento de conexión cultural entre América y Europa. Barcelona, 21 y 22 de octubre del 2020". Investigaciones Geográficas (104). doi:10.14350/rig.60378. ISSN 2448-7279. S2CID 233611245.
  4. ^ Mendes, Gilmar de Melo (2012). El equilibrio de la arquitectura organizativa desde el enfoque de agencia: estudio de un caso (Thesis). Universidad de Valladolid. doi:10.35376/10324/921.
  5. ^ "7 FUNCTIONAL REQUIREMENTS A BUILDING WALL SHOULD SATISFY". CivilBlog.Org. 2015-07-08. Retrieved 2020-05-31.
  6. ^ "What is Platform Framing? (with pictures)". wiseGEEK. Retrieved 2020-06-26.
  7. ^ "Burj Khalifa, Dubai | 182168". Emporis. Archived from the original on August 5, 2011. Retrieved 2018-09-17.

 

Code Violation: This fire-rated concrete block wall is penetrated by cable trays and electrical cables. The hole should be firestopped to restore the fire-resistance rating of the wall. Instead, it is filled with flammable polyurethane foam.

A building code (also building control or building regulations) is a set of rules that specify the standards for construction objects such as buildings and non-building structures. Buildings must conform to the code to obtain planning permission, usually from a local council. The main purpose of building codes is to protect public health, safety and general welfare as they relate to the construction and occupancy of buildings and structures — for example, the building codes in many countries require engineers to consider the effects of soil liquefaction in the design of new buildings.[1] The building code becomes law of a particular jurisdiction when formally enacted by the appropriate governmental or private authority.[2]

Building codes are generally intended to be applied by architects, engineers, interior designers, constructors and regulators but are also used for various purposes by safety inspectors, environmental scientists, real estate developers, subcontractors, manufacturers of building products and materials, insurance companies, facility managers, tenants, and others. Codes regulate the design and construction of structures where adopted into law.

Examples of building codes began in ancient times.[3] In the USA the main codes are the International Building Code or International Residential Code [IBC/IRC], electrical codes and plumbing, mechanical codes. Fifty states and the District of Columbia have adopted the I-Codes at the state or jurisdictional level.[4] In Canada, national model codes are published by the National Research Council of Canada.[5] In the United Kingdom, compliance with Building Regulations is monitored by building control bodies, either Approved Inspectors or Local Authority Building Control departments. Building Control regularisation charges apply in case work is undertaken which should have had been inspected at the time of the work if this was not done.[6]

Types

[edit]

The practice of developing, approving, and enforcing building codes varies considerably among nations. In some countries building codes are developed by the government agencies or quasi-governmental standards organizations and then enforced across the country by the central government. Such codes are known as the national building codes (in a sense they enjoy a mandatory nationwide application).

In other countries, where the power of regulating construction and fire safety is vested in local authorities, a system of model building codes is used. Model building codes have no legal status unless adopted or adapted by an authority having jurisdiction. The developers of model codes urge public authorities to reference model codes in their laws, ordinances, regulations, and administrative orders. When referenced in any of these legal instruments, a particular model code becomes law. This practice is known as 'adoption by reference'. When an adopting authority decides to delete, add, or revise any portions of the model code adopted, it is usually required by the model code developer to follow a formal adoption procedure in which those modifications can be documented for legal purposes.

There are instances when some local jurisdictions choose to develop their own building codes. At some point in time all major cities in the United States had their own building codes. However, due to ever increasing complexity and cost of developing building regulations, virtually all municipalities in the country have chosen to adopt model codes instead. For example, in 2008 New York City abandoned its proprietary 1968 New York City Building Code in favor of a customized version of the International Building Code.[7] The City of Chicago remains the only municipality in America that continues to use a building code the city developed on its own as part of the Municipal Code of Chicago.

In Europe, the Eurocode: Basis of structural design, is a pan-European building code that has superseded the older national building codes. Each country now has National Annexes to localize the contents of the Eurocodes.

Similarly, in India, each municipality and urban development authority has its own building code, which is mandatory for all construction within their jurisdiction. All these local building codes are variants of a National Building Code,[8] which serves as model code proving guidelines for regulating building construction activity.

Scope

[edit]

The purpose of building codes is to provide minimum standards for safety, health, and general welfare including structural integrity, mechanical integrity (including sanitation, water supply, light, and ventilation), means of egress, fire prevention and control, and energy conservation.[9][10] Building codes generally include:

  • Standards for structure, placement, size, usage, wall assemblies, fenestration size/locations, egress rules, size/location of rooms, foundations, floor assemblies, roof structures/assemblies, energy efficiency, stairs and halls, mechanical, electrical, plumbing, site drainage & storage, appliance, lighting, fixtures standards, occupancy rules, and swimming pool regulations
  • Rules regarding parking and traffic impact
  • Fire code rules to minimize the risk of a fire and to ensure safe evacuation in the event of such an emergency[citation needed]
  • Requirements for earthquake (seismic code), hurricane, flood, and tsunami resistance, especially in disaster prone areas or for very large buildings where a failure would be catastrophic[citation needed]
  • Requirements for specific building uses (for example, storage of flammable substances, or housing a large number of people)
  • Energy provisions and consumption
  • Grandfather clauses: Unless the building is being renovated, the building code usually does not apply to existing buildings.
  • Specifications on components
  • Allowable installation methodologies
  • Minimum and maximum room ceiling heights, exit sizes and location
  • Qualification of individuals or corporations doing the work
  • For high structures, anti-collision markers for the benefit of aircraft

Building codes are generally separate from zoning ordinances, but exterior restrictions (such as setbacks) may fall into either category.

Designers use building code standards out of substantial reference books during design. Building departments review plans submitted to them before construction, issue permits [or not] and inspectors verify compliance to these standards at the site during construction.

There are often additional codes or sections of the same building code that have more specific requirements that apply to dwellings or places of business and special construction objects such as canopies, signs, pedestrian walkways, parking lots, and radio and television antennas.

Criticism

[edit]

Building codes have been criticized for contributing to housing crisis and increasing the cost of new housing to some extent, including through conflicting code between different administrators.[11] Proposed improvements include regular review and cost-benefit analysis of building codes,[12] promotion of low-cost construction materials and building codes suitable to mass production,[11] reducing bureaucracy, and promoting transparency.[13]

History

[edit]

Antiquity

[edit]

Building codes have a long history. The earliest known written building code is included in the Code of Hammurabi,[3] which dates from circa 1772 BC.

The book of Deuteronomy in the Hebrew Bible stipulated that parapets must be constructed on all houses to prevent people from falling off.[14]

In the Chinese book of rites it mentions that ancestral temples and houses should be a certain standard length in ancient China they measured land in the chu or well field system so it was important to be precise though most of the actual lengths are lost or obscure.[15][16]

In ancient Japan a certain official destroyed a courtiers house because the size was above his rank.[17]

Modern era

[edit]

France

[edit]

In Paris, under the reconstruction of much of the city under the Second Empire (1852–70), great blocks of apartments were erected[18] and the height of buildings was limited by law to five or six stories at most.

United Kingdom

[edit]

After the Great Fire of London in 1666, which had been able to spread so rapidly through the densely built timber housing of the city, the Rebuilding of London Act 1666 was passed in the same year as the first significant building regulation.[19] Drawn up by Sir Matthew Hale, the act regulated the rebuilding of the city, required housing to have some fire resistance capacity and authorised the City of London Corporation to reopen and widen roads.[20] The Laws of the Indies were passed in the 1680s by the Spanish Crown to regulate the urban planning for colonies throughout Spain's worldwide imperial possessions.

The first systematic national building standard was established with the Metropolitan Buildings Act 1844. Among the provisions, builders were required to give the district surveyor two days' notice before building, regulations regarding the thickness of walls, height of rooms, the materials used in repairs, the dividing of existing buildings and the placing and design of chimneys, fireplaces and drains were to be enforced and streets had to be built to minimum requirements.[21]

The Metropolitan Buildings Office was formed to regulate the construction and use of buildings throughout London. Surveyors were empowered to enforce building regulations, which sought to improve the standard of houses and business premises, and to regulate activities that might threaten public health. In 1855 the assets, powers and responsibilities of the office passed to the Metropolitan Board of Works.

United States

[edit]

The City of Baltimore passed its first building code in 1891.[22] The Great Baltimore Fire occurred in February 1904. Subsequent changes were made that matched other cities.[23] In 1904, a Handbook of the Baltimore City Building Laws was published. It served as the building code for four years. Very soon, a formal building code was drafted and eventually adopted in 1908.

The structural failure of the tank that caused the Great Molasses Flood of 1919 prompted the Boston Building Department to require engineering and architectural calculations be filed and signed. U.S. cities and states soon began requiring sign-off by registered professional engineers for the plans of major buildings.[24]

More recently, the 2015 Berkeley balcony collapse has prompted updates to California's balcony building codes, set for 2025, which include stricter material requirements, enhanced load-bearing standards, and mandatory inspections which known as SB326 and SB721.[25]These laws mandate regular inspections every six years for multifamily buildings. Property owners and HOAs are required to address any structural or waterproofing issues identified during inspections to ensure compliance and safety. Failure to comply can result in fines, increased liability, and legal consequences. The updates aim to prevent tragedies like the Berkeley collapse, which was caused by dry rot and structural failure, by ensuring the long-term safety and durability of elevated structures.[26]

Energy codes
[edit]

The current energy codes[clarification needed] of the United States are adopted at the state and municipal levels and are based on the International Energy Conservation Code (IECC). Previously, they were based on the Model Energy Code (MEC). As of March 2017, the following residential codes have been partially or fully adopted by states:[27]

  • 2015 IECC or equivalent (California, Illinois, Maryland, Massachusetts, Michigan, Pennsylvania, New Jersey, New York, Vermont, Washington)
  • 2012 IECC or equivalent (Alabama, Connecticut, Delaware, District of Columbia, Florida, Iowa, Minnesota, Nevada, Rhode Island, Texas)
  • 2009 IECC or equivalent (Arkansas, Georgia, Idaho, Indiana, Kentucky, Louisiana, Montana, Nebraska, New Hampshire, New Mexico, North Carolina, Ohio, Oklahoma, Oregon, South Carolina, Tennessee, Virginia, West Virginia, Wisconsin)
  • 2006 IECC or equivalent (Utah)
  • 2006 IECC or no statewide code (Alaska, Arizona, Colorado, Kansas, Maine, Mississippi, Missouri, North Dakota, South Dakota, Wyoming)

Australia

[edit]

Australia uses the National Construction Code.

See also

[edit]
  • Building officials
  • Construction law
  • Earthquake-resistant structures
  • Energy Efficiency and Conservation Block Grants
  • Outline of construction
  • Seismic code
  • Uniform Mechanical Code
  • Variance (land use) – permission to vary zoning and sometimes building to code

References

[edit]
  1. ^ CEN (2004). EN1998-5:2004 Eurocode 8: Design of structures for earthquake resistance, part 5: Foundations, retaining structures and geotechnical aspects. Brussels: European Committee for Standardization.
  2. ^ Ching, Francis D. K.; Winkel, Steven R. (22 March 2016). Building Codes Illustrated: A Guide to Understanding the 2015 International Building Code. John Wiley & Sons. ISBN 978-1-119-15095-4.
  3. ^ a b "Hammurabi's Code of Laws". eawc.evansville.edu. Archived from the original on 9 May 2008. Retrieved 24 May 2008.
  4. ^ "About ICC". www.iccsafe.org. Retrieved 8 December 2013.
  5. ^ Canada, Government of Canada. National Research Council. "Codes Canada - National Research Council Canada". www.nrc-cnrc.gc.ca. Retrieved 1 April 2018.
  6. ^ Northampton Borough Council, Building Control - regularisation charges www.northampton.gov.uk Archived 11 May 2021 at the Wayback Machine, accessed 15 March 2021
  7. ^ NYC Construction Codes www.nyc.gov Archived 2 July 2006 at the Wayback Machine
  8. ^ National Building Code www.bis.org.in
  9. ^ Hageman, Jack M., and Brian E. P. Beeston. Contractor's guide to the building code. 6th ed. Carlsbad, CA: Craftsman Book Co., 2008. 10. Print.
  10. ^ Wexler, Harry J., and Richard Peck. Housing and local government: a research guide for policy makers and planners. Lexington, Mass. u.a.: Lexington Books, 1974. 53. Print.
  11. ^ a b Listokin, David; Hattis, David B. (2005). "Building Codes and Housing". Cityscape. 8 (1). US Department of Housing and Urban Development: 21–67. ISSN 1936-007X. JSTOR 20868571. Retrieved 25 July 2024.
  12. ^ Nwadike, Amarachukwu Nnadozie; Wilkinson, Suzanne (3 February 2022). "Why amending building codes? An investigation of the benefits of regular building code amendment in New Zealand". International Journal of Building Pathology and Adaptation. 40 (1): 76–100. doi:10.1108/IJBPA-08-2020-0068. ISSN 2398-4708.
  13. ^ Nwadike, Amarachukwu; Wilkinson, Suzanne (2021). "Promoting Performance-Based Building Code Compliance in New Zealand". Journal of Performance of Constructed Facilities. 35 (4). doi:10.1061/(ASCE)CF.1943-5509.0001603. ISSN 0887-3828.
  14. ^ Deuteronomy 22:8
  15. ^ Confucius (29 August 2016). Delphi Collected Works of Confucius - Four Books and Five Classics of Confucianism (Illustrated). Delphi Classics. ISBN 978-1-78656-052-0.
  16. ^ Mencius (28 October 2004). Mencius. Penguin UK. ISBN 978-0-14-190268-5.
  17. ^ Shonagon, Sei (30 November 2006). The Pillow Book. Penguin UK. ISBN 978-0-14-190694-2.
  18. ^ New International Encyclopedia
  19. ^ 'Charles II, 1666: An Act for rebuilding the City of London.', Statutes of the Realm: volume 5: 1628–80 (1819), pp. 603–12. URL: british-history.ac.uk, date accessed: 8 March 2007.
  20. ^ 'Book 1, Ch. 15: From the Fire to the death of Charles II', A New History of London: Including Westminster and Southwark (1773), pp. 230–55. URL: http://www.british-history.ac.uk/report.asp?compid=46732. Date accessed: 7 March 2007.
  21. ^ "A Brief History of Building Regulations". www.npt.gov.uk.
  22. ^ Baltimore (Md.) (1891). Ordinances and Resolutions of the Mayor and City Council of Baltimore ... – via books.google.com.
  23. ^ Baltimore: The Building of an American City, Sherry H. Olson, Published 1997, Johns Hopkins University Press, Baltimore (Md.), ISBN 0-8018-5640-X, p. 248.
  24. ^ Puleo, Stephen (2004). Dark Tide: The Great Boston Molasses Flood of 1919. Beacon Press. ISBN 0-8070-5021-0.
  25. ^ "SB 721- CHAPTERED". leginfo.legislature.ca.gov. Retrieved 15 January 2025.
  26. ^ gh, amir (18 December 2024). "California Balcony Building Code Updates 2025 - DrBalcony". Retrieved 15 January 2025.cite web: CS1 maint: url-status (link)
  27. ^ "Residential Code Status | The Building Codes Assistance Project". bcapcodes.org. 12 November 2015. Retrieved 11 September 2018.
[edit]
  • IAPMO Website
  • IAPMO Codes Website

 

Merchandise on display in a hardware store
(Learn how and when to remove this message)

The concept of home improvement, home renovation or remodeling is the process of renovating, making improvements or making additions to one's home.[1] Home improvement can consist of projects that upgrade an existing home interior (such as electrical and plumbing), exterior (masonry, concrete, siding, roofing) or other improvements to the property (i.e. garden work or garage maintenance/additions). Home improvement projects can be carried out for a number of different reasons; personal preference and comfort, maintenance or repair work, making a home bigger by adding rooms/spaces, as a means of saving energy, or to improve safety.[2]

Types of home improvement

[edit]
Man painting a fence

While "home improvement" often refers to building projects that alter the structure of an existing home, it can also include improvements to lawns, gardens, and outdoor structures, such as gazebos and garages. It also encompasses maintenance, repair, and general servicing tasks. Home improvement projects generally have one or more of the following goals:[citation needed]

Comfort

[edit]
  • Upgrading heating, ventilation and air conditioning systems (HVAC).
  • Upgrading rooms with luxuries, such as adding gourmet features to a kitchen or a hot tub spa to a bathroom.
  • Increasing the capacity of plumbing and electrical systems.
  • Waterproofing basements.
  • Soundproofing rooms, especially bedrooms and baths.

Maintenance and repair

[edit]

Maintenance projects can include:

  • Roof tear-off and replacement.
  • Replacement or new construction windows.
  • Concrete and masonry repairs to the foundation and chimney.
  • Repainting rooms, walls or fences
  • Repairing plumbing and electrical systems
  • Wallpapering
  • Furniture polishing
  • Plumbing, home interior and exterior works
  • Shower maintenance

Additional space

[edit]

Additional living space may be added by:

  • Turning marginal areas into livable spaces such as turning basements into recrooms, home theaters, or home offices – or attics into spare bedrooms.
  • Extending one's house with rooms added to the side of one's home or, sometimes, extra levels to the original roof. Such a new unit of construction is called an "add-on".[3]

Saving energy

[edit]

Homeowners may reduce utility costs with:

  • Energy-efficient thermal insulation, replacement windows, and lighting.
  • Renewable energy with biomass pellet stoves, wood-burning stoves, solar panels, wind turbines, programmable thermostats,[4] and geothermal exchange heat pumps (see autonomous building).

Safety, emergency management, security and privacy

[edit]

The need to be safer or for better privacy or emergency management can be fulfilled with diversified measures which can be improved, maintained or added. Secret compartments and passages can also be conceived for privacy and security.

  • Interventions for fire protection and avoidance. Possible examples are fire sprinkler systems for automatic fire suppression, smoke detectors for fire detection, fire alarm systems, or passive fire protection (including some wildfire management strategies).
  • Technical solutions to increase protection from natural disasters, or geotechnical and structural safety (e.g. hurricane or seismic retrofit).
  • Interventions and additions to increase home safety from other hazards, like falls, electric injuries, gas leaks or home exposure to environmental health concerns.
  • Physical security measures:
    • Access control systems and physical barriers, which can include fences, physical door and window security measures (e.g. grilles, laminated glass, window shutters), locks;
    • Security lighting, security alarms and video surveillance.
  • Safes and vaults.
  • Spaces for emergency evacuation, like emergency exits and rarer escape tunnels.
  • Spaces which provide protection in the event of different emergencies: areas of refuge, storm cellars (as protection from tornadoes and other kinds of severe weather), panic rooms, bunkers and bomb shelters (including fallout shelters), etc.
  • Home renovations or additions used to increase privacy can be as simple as curtains or much more advanced, such as some structural surveillance counter-measures. They may overlap with physical security measures.
  • Public utility outage preparedness, like backup generators for providing power during power outages .

Home improvement industry

[edit]
Screws and bolts in an OBI home improvement store in Poland

Home or residential renovation is an almost $300 billion industry in the United States,[5] and a $48 billion industry in Canada.[6][full citation needed] The average cost per project is $3,000 in the United States and $11,000–15,000 in Canada.

Professional home improvement is ancient and goes back to the beginning of recorded civilization. One example is Sergius Orata, who in the 1st century B.C. is said by the writer Vitruvius (in his famous book De architectura) to have invented the hypocaust. The hypocaust is an underfloor heating system that was used throughout the Roman Empire in villas of the wealthy. He is said to have become wealthy himself by buying villas at a low price, adding spas and his newly invented hypocaust, and reselling them at higher prices.[7]

Renovation contractors

[edit]

Perhaps the most important or visible professionals in the renovation industry are renovation contractors or skilled trades. These are the builders that have specialized credentials, licensing and experience to perform renovation services in specific municipalities.

While there is a fairly large "grey market" of unlicensed companies, there are those that have membership in a reputable association and/or are accredited by a professional organization. Homeowners are recommended to perform checks such as verifying license and insurance and checking business references prior to hiring a contractor to work on their house.

Because interior renovation will touch the change of the internal structure of the house, ceiling construction, circuit configuration and partition walls, etc., such work related to the structure of the house, of course, also includes renovation of wallpaper posting, furniture settings, lighting, etc.

Aggregators

[edit]

Aggregators are companies that bundle home improvement service offers and act as intermediary agency between service providers and customers.

[edit]

Home improvement was popularized on television in 1979 with the premiere of This Old House starring Bob Vila on PBS. American cable channel HGTV features many do-it-yourself shows, as does sister channel DIY Network.[8] Danny Lipford hosts and produces the nationally syndicated Today's Homeowner with Danny Lipford. Tom Kraeutler and Leslie Segrete co-host the nationally syndicated The Money Pit Home Improvement Radio Show.

Movies that poked fun at the difficulties involved include: Mr. Blandings Builds His Dream House (1948), starring Cary Grant and Myrna Loy; George Washington Slept Here (1942), featuring Jack Benny and Ann Sheridan; and The Money Pit (1986), with Tom Hanks and Shelley Long. The sitcom Home Improvement used the home improvement theme for comedic purposes.

See also

[edit]
  • Home repair
  • Housekeeping
  • Maintenance, repair and operations

References

[edit]
  1. ^ https://dictionary.cambridge.org/us/dictionary/english/home-improvement
  2. ^ https://www.collinsdictionary.com/us/dictionary/english/home-improvements
  3. ^ "Add-on". English Oxford Living Dictionary (US). Oxford University Press. Archived from the original on February 21, 2017. Retrieved February 20, 2017.
  4. ^ Use a Programmable Thermostat, Common Sense, to Reduce Energy Bills Archived July 19, 2009, at the Wayback Machine, Brett Freeman, oldhouseweb.com
  5. ^ "Joint Center for Housing Studies of Harvard University, 2007" (PDF). Archived (PDF) from the original on August 7, 2014. Retrieved April 10, 2014.
  6. ^ "Canada Mortgage and Housing Corporation - Société canadienne d'hypothèques et de logement". Archived from the original on October 23, 2007. Retrieved October 23, 2007.
  7. ^ "Canada Homeowners Community - Example of Low-Cost Advices used by Canadian Homeowners (Community) for Home Improvement that boost the sale of your Home". Canada Homeowners Community. January 12, 2020.
  8. ^ Cerone, Daniel (September 17, 1991). "Tim Allen's Power Tools : Television: The comic who had Disney and cable executives abuzz parlayed his luck to develop 'Home Improvement". Los Angeles Times. Archived from the original on June 22, 2015. Retrieved June 16, 2015.

Further reading

[edit]
  • Richard Harris, Building a Market: The Rise of the Home Improvement Industry, 1914-1960. Chicago: University of Chicago Press, 2012.
  • Michael W. Litchfield (2012). Chip Harley (ed.). Renovation (4th, Completely revised and updated. ed.). Newtown, Conn.: Taunton Press, Incorporated. ISBN 978-1600854927.
[edit]
  • Media related to Home improvement at Wikimedia Commons

 

Photo
Photo
Photo
Photo

Reviews for


Jeffery James

(5)

Very happy with my experience. They were prompt and followed through, and very helpful in fixing the crack in my foundation.

Sarah McNeily

(5)

USS was excellent. They are honest, straightforward, trustworthy, and conscientious. They thoughtfully removed the flowers and flower bulbs to dig where they needed in the yard, replanted said flowers and spread the extra dirt to fill in an area of the yard. We've had other services from different companies and our yard was really a mess after. They kept the job site meticulously clean. The crew was on time and friendly. I'd recommend them any day! Thanks to Jessie and crew.

Jim de Leon

(5)

It was a pleasure to work with Rick and his crew. From the beginning, Rick listened to my concerns and what I wished to accomplish. Out of the 6 contractors that quoted the project, Rick seemed the MOST willing to accommodate my wishes. His pricing was definitely more than fair as well. I had 10 push piers installed to stabilize and lift an addition of my house. The project commenced at the date that Rick had disclosed initially and it was completed within the same time period expected (based on Rick's original assessment). The crew was well informed, courteous, and hard working. They were not loud (even while equipment was being utilized) and were well spoken. My neighbors were very impressed on how polite they were when they entered / exited my property (saying hello or good morning each day when they crossed paths). You can tell they care about the customer concerns. They ensured that the property would be put back as clean as possible by placing MANY sheets of plywood down prior to excavating. They compacted the dirt back in the holes extremely well to avoid large stock piles of soils. All the while, the main office was calling me to discuss updates and expectations of completion. They provided waivers of lien, certificates of insurance, properly acquired permits, and JULIE locates. From a construction background, I can tell you that I did not see any flaws in the way they operated and this an extremely professional company. The pictures attached show the push piers added to the foundation (pictures 1, 2 & 3), the amount of excavation (picture 4), and the restoration after dirt was placed back in the pits and compacted (pictures 5, 6 & 7). Please notice that they also sealed two large cracks and steel plated these cracks from expanding further (which you can see under my sliding glass door). I, as well as my wife, are extremely happy that we chose United Structural Systems for our contractor. I would happily tell any of my friends and family to use this contractor should the opportunity arise!

Chris Abplanalp

(5)

USS did an amazing job on my underpinning on my house, they were also very courteous to the proximity of my property line next to my neighbor. They kept things in order with all the dirt/mud they had to excavate. They were done exactly in the timeframe they indicated, and the contract was very details oriented with drawings of what would be done. Only thing that would have been nice, is they left my concrete a little muddy with boot prints but again, all-in-all a great job

Dave Kari

(5)

What a fantastic experience! Owner Rick Thomas is a trustworthy professional. Nick and the crew are hard working, knowledgeable and experienced. I interviewed every company in the area, big and small. A homeowner never wants to hear that they have foundation issues. Out of every company, I trusted USS the most, and it paid off in the end. Highly recommend.

View GBP