Determining Pier Spacing with Advanced Survey Tools

Determining Pier Spacing with Advanced Survey Tools

Overview of advanced survey tools available for determining pier spacing


In the realm of civil engineering and construction, the accurate determination of pier spacing is crucial for the stability and longevity of bridges and elevated structures. Bowed walls suggest pressure issues that need foundation wall repair service professional foundation repair service waterproofing. Advanced survey tools have revolutionized this process, offering precision and efficiency that were previously unattainable. This overview explores the key tools and technologies that are currently available for determining pier spacing, highlighting their benefits and applications.

One of the most prominent tools in this domain is the Global Positioning System (GPS). GPS technology allows for highly accurate measurements of distances and elevations, which are essential for determining the optimal spacing between piers. By using satellite signals, GPS devices can provide real-time data with centimeter-level accuracy, ensuring that engineers can make informed decisions based on precise measurements.

Another advanced tool is the Light Detection and Ranging (LiDAR) system. LiDAR uses laser pulses to create detailed 3D maps of the terrain. This technology is particularly useful in complex environments where traditional surveying methods may be impractical. By providing a comprehensive view of the landscape, LiDAR helps engineers identify the best locations for piers, taking into account factors such as soil composition, water levels, and existing infrastructure.

Terrestrial Laser Scanning (TLS) is another valuable tool in the arsenal of modern surveyors. Similar to LiDAR, TLS uses laser technology to capture detailed point clouds of the environment. These point clouds can be used to create highly accurate models of the terrain, allowing engineers to simulate different pier spacing scenarios and evaluate their structural implications.

Additionally, Geographic Information Systems (GIS) play a crucial role in the planning and execution of pier spacing projects. GIS software integrates various data sources, including GPS, LiDAR, and TLS, to provide a holistic view of the project site. This integration enables engineers to analyze multiple variables simultaneously, such as geological data, environmental impact, and construction constraints, leading to more informed and sustainable decisions.

In conclusion, the advent of advanced survey tools has significantly enhanced the process of determining pier spacing. Technologies like GPS, LiDAR, TLS, and GIS offer unparalleled accuracy and efficiency, allowing engineers to design safer and more durable structures. As these tools continue to evolve, their integration into construction practices will undoubtedly lead to further advancements in the field of civil engineering.

Step-by-step guide on utilizing LiDAR technology for precise pier spacing measurements


Determining pier spacing with advanced survey tools like LiDAR technology is a fascinating and efficient method that has revolutionized the field of civil engineering and construction. LiDAR, which stands for Light Detection and Ranging, uses laser pulses to measure distances and create precise 3D maps of the terrain. This technology provides unmatched accuracy and efficiency in measuring pier spacing, ensuring that structures are built on stable and well-spaced foundations. Here's a step-by-step guide on how to utilize LiDAR technology for precise pier spacing measurements.

First, you need to plan your survey. Identify the area where the piers will be placed and understand the terrain. This involves gathering preliminary data about the site, including any potential obstacles or variations in elevation. Knowing the scope of your project will help you set up the LiDAR equipment correctly.

Next, set up the LiDAR scanner. Place the scanner in a central location that provides a clear view of the entire area you intend to survey. Ensure that the scanner is stable and level, as any movement can affect the accuracy of the measurements. Modern LiDAR scanners are often equipped with built-in leveling systems to help with this.

Calibrate the LiDAR scanner according to the manufacturer's instructions. Calibration ensures that the scanner provides accurate data. This step may involve setting the scanner to the correct height above the ground and aligning it with known reference points.

Begin the scanning process. Activate the LiDAR scanner and allow it to sweep the area. The scanner will emit laser pulses and measure the time it takes for these pulses to return after hitting the ground or any objects. This data is then used to create a detailed 3D map of the terrain.

While the scanner is running, it's important to monitor its progress. Ensure that there are no obstructions in its path and that the scanner continues to operate smoothly. Some LiDAR systems allow you to view a real-time preview of the data being collected, which can help you make adjustments if necessary.

Once the scanning is complete, transfer the data to your computer for analysis. Use specialized software to process the LiDAR data. This software will allow you to visualize the 3D map of the terrain and identify key features such as elevation changes, slopes, and potential pier locations.

Analyze the data to determine the optimal pier spacing. Look for areas with stable ground and consistent elevation. Use the software tools to measure distances between proposed pier locations, ensuring that they are spaced according to engineering standards and project requirements.

Finally, generate a report or a detailed map that highlights the recommended pier spacing. This documentation will be crucial for the construction team, providing them with precise measurements and locations for pier placement.

In conclusion, utilizing LiDAR technology for determining pier spacing is a highly effective method that offers precision, efficiency, and reliability. By following these steps, you can ensure that your project is built on a solid foundation, minimizing the risk of structural issues in the future.

Explanation of ground-penetrating radar (GPR) and its application in assessing foundation conditions


Ground-penetrating radar (GPR) is a non-invasive geophysical technique used to image the subsurface by transmitting electromagnetic waves into the ground and analyzing the reflections that return. It's akin to an ultrasound for the earth, providing a detailed view of what lies beneath the surface without the need for excavation.

In the context of assessing foundation conditions, GPR plays a crucial role. When determining pier spacing for a structure, understanding the subsurface conditions is paramount. Piers, or deep foundation elements, need to be placed in areas where they can bear the load of the structure effectively. GPR helps in identifying variations in soil types, detecting voids, fractures, or any anomalies that could affect the stability and integrity of the foundation.

By using GPR, engineers can map out the subsurface environment with a high degree of accuracy. This technology allows for the visualization of soil stratification, moisture content variations, and the presence of any buried objects or utilities. Such detailed subsurface imaging aids in making informed decisions about where to place piers, ensuring they are situated in optimal locations for load distribution.

Moreover, GPR is invaluable in urban environments where space is limited, and traditional excavation methods are impractical or too costly. It enables quick and efficient subsurface assessments, reducing the time and cost associated with foundation work. Additionally, GPR's non-destructive nature means it can be used in sensitive areas without causing damage to existing structures or the environment.

In summary, ground-penetrating radar is a vital tool in modern engineering, especially when it comes to determining pier spacing. Its ability to provide detailed subsurface images helps ensure that foundations are designed and constructed in a way that is safe, efficient, and cost-effective.

Discussion on the benefits of using unmanned aerial vehicles (UAVs) for aerial surveying in foundation repair projects


When it comes to foundation repair projects, precision and accuracy are paramount. One of the critical aspects of such projects is determining the appropriate pier spacing, which ensures the stability and longevity of the structure. Traditional methods of aerial surveying can be time-consuming and sometimes less accurate. However, the advent of unmanned aerial vehicles (UAVs), commonly known as drones, has revolutionized the field, offering numerous benefits that significantly enhance the surveying process.

Firstly, UAVs provide unparalleled accuracy in data collection. Equipped with high-resolution cameras and LiDAR (Light Detection and Ranging) technology, drones can capture detailed images and topographical data with exceptional precision. This level of detail is crucial for foundation repair projects, where even minor discrepancies can lead to significant structural issues. The accurate data gathered by UAVs allows engineers to make informed decisions about pier spacing, ensuring that the foundation is supported correctly.

Another significant advantage of using UAVs for aerial surveying is the speed at which they can cover large areas. Traditional methods often require manual labor and can take days to survey a single site. In contrast, a UAV can cover the same area in a fraction of the time. This efficiency not only reduces project timelines but also lowers labor costs, making it a cost-effective solution for contractors and engineers.

Safety is another critical factor. Foundation repair sites can be hazardous, with unstable ground and potential risks to personnel. UAVs eliminate the need for human surveyors to enter these dangerous areas, reducing the risk of accidents and injuries. This aspect is particularly important in projects where the ground may be uneven or susceptible to further damage.

Moreover, UAVs offer flexibility and ease of use. They can be deployed in various weather conditions and can access hard-to-reach areas that might be inaccessible to traditional surveying equipment. This flexibility ensures that surveys can be conducted efficiently, regardless of the site's challenges.

Lastly, the data collected by UAVs can be easily integrated into modern engineering software, allowing for advanced analysis and modeling. This integration facilitates better visualization of the site and aids in the decision-making process regarding pier spacing and other critical aspects of the foundation repair.

In conclusion, the use of unmanned aerial vehicles for aerial surveying in foundation repair projects offers numerous benefits, including enhanced accuracy, increased efficiency, improved safety, and greater flexibility. As technology continues to advance, UAVs are likely to become an indispensable tool in the field of civil engineering, particularly in projects that require precise and reliable data for successful outcomes.

Case studies showcasing successful implementation of advanced survey tools in determining pier spacing


Certainly!

Exploring the successful implementation of advanced survey tools in determining pier spacing offers a fascinating glimpse into the intersection of technology and civil engineering. One notable case study involves a major bridge construction project across a wide river. Traditional methods of determining pier spacing relied heavily on manual calculations and on-site measurements, which were not only time-consuming but also susceptible to human error.

Enter advanced survey tools such as LiDAR (Light Detection and Ranging) and GPS-RTK (Real-Time Kinematic) systems. These technologies allowed engineers to collect highly accurate data about the river's width, depth, and the geological composition of the riverbed. By using LiDAR, they were able to create a detailed 3D model of the riverbed, identifying potential weak points and optimal locations for pier placement.

Another compelling example is a coastal pier construction project where environmental factors played a crucial role. Here, advanced survey drones equipped with multispectral cameras were employed. These drones provided real-time data on tidal patterns, water salinity, and even marine life activity, which are critical factors in determining pier spacing to ensure structural integrity and environmental sustainability.

In both cases, the integration of advanced survey tools not only expedited the data collection process but also enhanced the precision of pier spacing decisions. This led to more robust and durable structures, reduced construction costs, and minimized environmental impact. These success stories underscore the transformative potential of technology in civil engineering, paving the way for more innovative and efficient project executions in the future.

Comparison of traditional methods versus advanced survey tools in terms of accuracy and efficiency


When it comes to determining pier spacing, the methods used can significantly impact both the accuracy and efficiency of the results. Traditional methods, which often involve manual measurements and basic tools, have been the standard for many years. However, with the advent of advanced survey tools, the landscape is rapidly changing.

Traditional methods typically rely on physical measurements taken with tools like tape measures, levels, and simple theodolites. While these methods can be effective, they are often time-consuming and prone to human error. Factors such as environmental conditions, the skill level of the surveyor, and the complexity of the terrain can all introduce variability into the measurements. Additionally, traditional methods may not provide the level of detail required for modern engineering projects, especially those involving complex structures like piers.

In contrast, advanced survey tools offer a more precise and efficient approach to determining pier spacing. Technologies such as LiDAR (Light Detection and Ranging), GNSS (Global Navigation Satellite Systems), and total stations provide highly accurate data with minimal human intervention. These tools can quickly scan large areas, capturing detailed information about the terrain and existing structures. The data collected can then be analyzed using sophisticated software, allowing engineers to make informed decisions about pier spacing.

One of the key advantages of advanced survey tools is their ability to provide real-time data. This means that engineers can make adjustments on the fly, reducing the need for multiple site visits and saving both time and money. Additionally, the high level of accuracy offered by these tools ensures that the pier spacing is optimized, leading to safer and more reliable structures.

In terms of efficiency, advanced survey tools outperform traditional methods hands down. The speed at which data can be collected and analyzed allows projects to move forward more quickly, reducing overall project timelines. This is particularly important in industries where time is money, such as construction and infrastructure development.

In conclusion, while traditional methods have served us well in the past, the introduction of advanced survey tools represents a significant leap forward in determining pier spacing. These tools offer unparalleled accuracy and efficiency, making them the preferred choice for modern engineering projects. As technology continues to evolve, it is likely that these advanced methods will become even more sophisticated, further enhancing our ability to design and construct safe, reliable structures.



 

Hoffman Estates is located in Illinois
Hoffman Estates
Hoffman Estates
 
Hoffman Estates is located in the United States
Hoffman Estates
Hoffman Estates
 
Hoffman Estates, Illinois
Village
Hoffman Estates scenery
Hoffman Estates scenery
Flag of Hoffman Estates, Illinois
Official seal of Hoffman Estates, Illinois
Motto: 
"Growing to Greatness"
Location of Hoffman Estates in Cook County, Illinois
Location of Hoffman Estates in Cook County, Illinois
Hoffman Estates is located in Chicago metropolitan area
Hoffman Estates
Hoffman Estates
 

Coordinates: 42°03′50″N 88°08′49″W / 42.06389°N 88.14694°W / 42.06389; -88.14694CountryUnited StatesStateIllinoisCountiesCookTownshipsSchaumburg, Palatine, Hanover, BarringtonIncorporated1959 (village)Government

 

 • MayorWilliam D. McLeod[citation needed] • Village ManagerEric J. Palm[citation needed]Area

[1]
 • Total

21.25 sq mi (55.03 km2) • Land21.07 sq mi (54.56 km2) • Water0.18 sq mi (0.47 km2)  0.86%Elevation

[2]

824 ft (251 m)Population

 (2020)
 • Total

52,530 • Density2,493.71/sq mi (962.82/km2)Zip Code

60169, 60010, 60192

Area code(s)847 / 224FIPS code17-35411GNIS feature ID2398519[2]Websitewww.hoffmanestates.org

Hoffman Estates is a village in Cook County, Illinois, United States. It is a suburb of Chicago. Per the 2020 census, the population was 52,530.[3]

The village previously served as the headquarters for Sears and is one of the American headquarters for Mori Seiki. Now Arena, home of the Windy City Bulls of the NBA G League is part of the village. Between 2006 and 2009, the village hosted the Heartland International Tattoo, one of the largest music and dance festivals of its kind in the Midwest.

History

[edit]
Sunderlage Farm Smokehouse[4](National Register of Historic Places) in Hoffman Estates

Prior to the 1940s, German settlers moved into the area west of Roselle Road and north of Golf Road, then known as Wildcat Grove. The area was sparsely populated until farmers purchased land in the area in the 1940s.

In 1954, Sam and Jack Hoffman, owners of a father-son owned construction company, bought 160 acres of land in the area.[5] The pair constructed homes and began the development of the region which now bears their name. As residents moved in, they voted to incorporate the area, and the Village of Hoffman Estates was incorporated on September 23, 1959.[6][5][7] In 1973, six former town officials, including mayors Edward F. Pinger (1959−1965) and Roy L. Jenkins (1965−1969) were indicted on bribery and tax charges.[8]

Once the Northwest Tollway opened, Schaumburg Township became more attractive to Chicago commuters. In the early 1960s, land annexations north of the tollway and in other neighboring regions more than doubled Hoffman Estates' land area.[9]

The opening of the Woodfield Mall in Schaumburg to the east in 1971 made the area a major business center. An attempt to change the name of the village to East Barrington, among other names, was made in the early 1980s but failed upon a residential vote.[10]

In the 1990s, the Prairie Stone Business Park began development. This 750-acre (3.0 km2) planned multi-purpose business park[11] is bounded by Illinois Route 59 on the east, Interstate 90 on the south, Illinois Route 72 on the north, and Beverly Road on the west. The business park came to fruition in 1993 when Sears, Roebuck and Company relocated from the Sears Tower in Chicago to a sprawling headquarters in the northwest part of Prairie Stone.[12][11] That was followed in by Indramat and Quest International, which in 1995 also opened facilities in the park.[13][14][15] Throughout the 1990s, a health and wellness center and child care facility were developed, as well as other smaller office buildings, and a branch of Northern Illinois University. Development of the business park is still ongoing, and recent additions in the 2000s include the 11,000-seat Now Arena; office buildings for Serta, WT Engineering, I-CAR, and Mary Kay; a Cabela's outdoor outfitters store; a 295-room Marriott hotel; and the 400,000-square-foot (37,000 m2) Poplar Creek Crossing Retail Center, which is anchored by Target and numerous other big-box retailers. Future development will include further office buildings and retail development, Sun Island Hotel and Water Park, an amphitheater, and restaurants.

In 2011, the Village of Hoffman Estates took over ownership of the Now Arena.[16] On June 23, 2020, the Village of Hoffman Estates approved an $11.5 million deal to rename the Sears Centre Arena to the "NOW Arena".[17]

In the fall of 2016, papers and artifacts from President Barack Obama's administration began to arrive in town, where they are being stored in a building on Golf Road. The site is their temporary home while construction takes place on the Barack Obama Presidential Center in Jackson Park, Chicago, and is not open to the public.[18]

In January 2020, the Centers for Disease Control and Prevention (CDC) confirmed the second U.S. case of COVID-19 in a Hoffman Estates resident. The patient, a woman in her 60s returning from Wuhan, China, was treated at St. Alexius Medical Center.[19] Her husband was later infected in the first case of human-to-human transmission of the SARS-CoV-2 virus in the United States.[20]

Geography

[edit]

According to the 2021 census gazetteer files, Hoffman Estates has a total area of 21.25 square miles (55.04 km2), of which 21.07 square miles (54.57 km2) (or 99.15%) is land and 0.18 square miles (0.47 km2) (or 0.85%) is water.[21]

Demographics

[edit]
Historical population
Census Pop. Note
1960 8,296  
1970 22,238   168.1%
1980 37,272   67.6%
1990 46,363   24.4%
2000 49,495   6.8%
2010 51,895   4.8%
2020 52,530   1.2%
U.S. Decennial Census[22]
2010[23] 2020[24]
Hoffman Estates village, Illinois – Racial and ethnic composition
Note: the US Census treats Hispanic/Latino as an ethnic category. This table excludes Latinos from the racial categories and assigns them to a separate category. Hispanics/Latinos may be of any race.
Race / Ethnicity (NH = Non-Hispanic) Pop 2000[25] Pop 2010[23] Pop 2020[24] % 2000 % 2010 % 2020
White alone (NH) 33,789 29,357 26,014 68.27% 56.57% 49.52%
Black or African American alone (NH) 2,141 2,393 2,472 4.33% 4.61% 4.71%
Native American or Alaska Native alone (NH) 54 60 69 0.11% 0.12% 0.13%
Asian alone (NH) 7,429 11,701 13,733 15.01% 22.55% 26.14%
Pacific Islander alone (NH) 10 4 2 0.02% 0.01% 0.00%
Other race alone (NH) 73 70 183 0.15% 0.13% 0.35%
Mixed race or Multiracial (NH) 801 1,013 1,579 1.62% 1.95% 3.01%
Hispanic or Latino (any race) 5,198 7,297 8,478 10.50% 14.06% 16.14%
Total 49,495 51,895 52,350 100.00% 100.00% 100.00%

As of the 2020 census[26] there were 52,530 people, 18,110 households, and 14,048 families residing in the village. The population density was 2,472.58 inhabitants per square mile (954.67/km2). There were 19,160 housing units at an average density of 901.86 per square mile (348.21/km2). The racial makeup of the village was 52.08% White, 26.26% Asian, 4.87% African American, 0.60% Native American, 0.02% Pacific Islander, 7.51% from other races, and 8.68% from two or more races. Hispanic or Latino of any race were 16.14% of the population.

There were 18,110 households, out of which 36.3% had children under the age of 18 living with them, 61.71% were married couples living together, 11.97% had a female householder with no husband present, and 22.43% were non-families. 18.07% of all households were made up of individuals, and 5.43% had someone living alone who was 65 years of age or older. The average household size was 3.16 and the average family size was 2.77.

The village's age distribution consisted of 23.1% under the age of 18, 7.3% from 18 to 24, 27.7% from 25 to 44, 28.3% from 45 to 64, and 13.5% who were 65 years of age or older. The median age was 38.2 years. For every 100 females, there were 97.6 males. For every 100 females age 18 and over, there were 96.4 males.

The median income for a household in the village was $92,423, and the median income for a family was $103,641. Males had a median income of $56,210 versus $42,288 for females. The per capita income for the village was $40,016. About 3.3% of families and 4.3% of the population were below the poverty line, including 4.9% of those under age 18 and 3.5% of those age 65 or over.

Economy

[edit]

Employers

[edit]

Many Japanese companies have their U.S. headquarters in Hoffman Estates and Schaumburg[27] but the largest employers in Hoffman Estates as of 2023[28] are:

No. Employer No. of employees
1 St. Alexius Medical Center 2,500
2 Siemens Medical Systems 400
3 Claire's[29] 400
4 Village of Hoffman Estates 370
5 FANUC America[30] 350
6 Vistex 350
7 Leopardo Companies, Inc. 300
8 Wells Fargo 300
9 The Salvation Army 270
10 Tate & Lyle 220

Education

[edit]

The village is served by several public school districts. The majority of residents who live in Schaumburg Township attend:

  • Township High School District 211 (9–12)[31]
  • Community Consolidated School District 54 (K–8)[32]

North Hoffman Estates (north of I-90) residents are served by:

  • Township High School District 211
  • Community Consolidated School District 15 (K–8)[33] (East of Huntington Blvd)
  • Barrington School District 220 (K–12) (Unit District) (West of Huntington Blvd).[34]

Residents west of Barrington Road primarily attend Unit School District, Elgin Area U46.

High schools

[edit]

Schools located in the Hoffman Estates village limits:

  • Hoffman Estates High School
  • James B. Conant High School

Other high schools in the same township high school district:

  • Schaumburg High School
  • William Fremd High School
  • Palatine High School

Community college

[edit]

Most of the village is served by Harper College Community College District 512.

Miscellaneous education

[edit]

The Xilin Northwest Chinese School (simplified Chinese: 希林西北中文学校; traditional Chinese: 希林西北中文學校; pinyin: XÄ«lín XÄ«bÄ›i Zhōngwén Xuéxiào) holds its classes at Conant High School in Hoffman Estates.[35] It serves grades preschool through 12.[36] The school predominately serves mainland Chinese families. In 2003 the school held its classes in Palatine High School in Palatine. In 2000 the school had served around 300 students. This figure increased almost by 100%, to almost 600 students. This made it one of the largest of the Chinese schools in the Chicago area.[37]

Library

[edit]
  • Barrington Area Library
  • Schaumburg Township District Library
  • Gail Borden Public Library District
  • Palatine Township Library

Sister city

[edit]

Hoffman Estates has one sister city:[38]

  • Angoulême, Charente, Nouvelle-Aquitaine, France

Transportation

[edit]

Pace provides bus service on multiple routes connecting Hoffman Estates to Elgin, Rosemont, and other destinations.[39]

Notable people

[edit]
  • Tammy Duckworth, U.S. Senator from Illinois (2016–present)[40]
  • Rob Valentino (b. 1985), former soccer player who is an assistant coach for Atlanta United[41]
  • William Beckett, lead singer of the band The Academy Is...

Notes

[edit]
  1. ^ "2020 U.S. Gazetteer Files". United States Census Bureau. Retrieved March 15, 2022.
  2. ^ a b U.S. Geological Survey Geographic Names Information System: Hoffman Estates, Illinois
  3. ^ "Hoffman Estates village, Illinois". United States Census Bureau. Retrieved April 15, 2022.
  4. ^ "The Sunderlage Smokehouse: Hoffman Eestates' National Register Landmark". History of Schaumburg Township: A Blog of the Schaumburg Township District Library. February 21, 2010. Retrieved March 3, 2017.
  5. ^ a b Collins, Catherine (August 24, 1986). "Hoffman Estates Plans a Revamp of Future Image". Chicago Tribune.
  6. ^ "Hoffman Estates, IL". The Encyclopedia of Chicago. Retrieved March 8, 2020.
  7. ^ "HR0614 96th General Assembly". State of Illinois.
  8. ^ Davis, Robert (October 27, 1973). "U.S. indicts builder, seven ex-officials in suburb bribe". Chicago Tribune.
  9. ^ "History of Hoffman Estates". Village of Hoffman Estates. Retrieved March 8, 2020.
  10. ^ "Name history of Hoffman Estates". Falcon Living. Retrieved November 26, 2017.
  11. ^ a b Sulski, Jim (May 11, 2000). "Versatile Network Brings Workers to Prairie Stone Business Park". Chicago Tribune.
  12. ^ Bernstein, David (May 16, 2020). "The Sears Headquarters Deal Cost Taxpayers $500 Million. 30 Years Later, There's Little to Show for It". ProPublica.
  13. ^ Russis, Martha (December 28, 1994). "PRAIRIE STONE GETS ELECTRONIC FIRM FOR TENANT". Chicago Tribune.
  14. ^ Kerch, Steve (October 30, 1994). "GETTING THE NOD". Chicago Tribune.
  15. ^ "Village of Hoffman Estates: History of Hoffman Estates". Hoffmanestates.com. Archived from the original on May 11, 2012. Retrieved April 30, 2012.
  16. ^ Manson, Ken (December 23, 2009). "Suburb takes over Sears Centre". Chicago Tribune.
  17. ^ Zumbach, Lauren (June 23, 2020). "Sears name disappearing from another Chicago-area building. Hoffman Estates arena gets a new name this fall". Chicago Tribune. Retrieved June 24, 2020.
  18. ^ Skiba, Katherine (October 21, 2016). "Military Soon to Start Moving Obama's Papers to Hoffman Estates". Chicago Tribune. Washington DC. Retrieved March 3, 2017.
  19. ^ "Coronavirus Confirmed In Chicago; Woman In Her 60s Being Treated For Symptoms". CBS Chicago. Chicago. January 24, 2020. Retrieved February 13, 2020.
  20. ^ Hauck, Grace (January 30, 2020). "Chicago man is first US case of person-to-person coronavirus spread". USA Today. Chicago. Retrieved February 13, 2020.
  21. ^ "Gazetteer Files". Census.gov. Retrieved June 29, 2022.
  22. ^ "Decennial Census of Population and Housing by Decades". US Census Bureau.
  23. ^ a b "P2 Hispanic or Latino, and Not Hispanic or Latino by Race – 2010: DEC Redistricting Data (PL 94-171) – Hoffman Estates village, Illinois". United States Census Bureau.
  24. ^ a b "P2 Hispanic or Latino, and Not Hispanic or Latino by Race – 2020: DEC Redistricting Data (PL 94-171) –Hoffman Estates village, Illinois". United States Census Bureau.
  25. ^ "P004: Hispanic or Latino, and Not Hispanic or Latino by Race – 2000: DEC Summary File 1 – Hoffman Estates village, Illinois". United States Census Bureau.
  26. ^ "Explore Census Data". data.census.gov. Retrieved June 28, 2022.
  27. ^ Selvam, Ashok. "Asian population booming in suburbs". Daily Herald (Arlington Heights, Illinois). March 6, 2011. Retrieved on June 19, 2013.
  28. ^ "Village of Hoffman Estates Comprehensive Annual Financial Report". June 25, 2024.
  29. ^ " FAQ Archived July 13, 2014, at the Wayback Machine." Claire's. Retrieved on December 25, 2011. "Claire’s Stores, Inc. has its investor relations and customer service located in Pembroke Pines , Florida . The buying, marketing and distribution offices are located in Hoffman Estates, a suburb of Chicago . Please visit Contact Us if you would like to send correspondence to our corporate headquarters."
  30. ^ "Village of Hoffman Estates Top Employers". Hoffmanestates.org. March 21, 2012. Archived from the original on April 22, 2012. Retrieved April 30, 2012.
  31. ^ "d211.org". d211.org. Archived from the original on May 4, 2012. Retrieved April 30, 2012.
  32. ^ "sd54.k12.il.us". sd54.k12.il.us. April 19, 2012. Archived from the original on February 1, 1998. Retrieved April 30, 2012.
  33. ^ "ccsd15.net". ccsd15.net. Retrieved April 30, 2012.
  34. ^ "cusd220.lake.k12.il.us". cusd220.lake.k12.il.us. Archived from the original on July 3, 2006. Retrieved April 30, 2012.
  35. ^ "School Location." Northwest Xilin Chinese School. Retrieved on February 24, 2014. "School Address 700 East Cougar Trail,Hoffman Estates,IL 60194 Located at Conant High School campus."
  36. ^ "About Us." Northwest Xilin Chinese School. Retrieved on February 24, 2014.
  37. ^ Ray, Tiffany. "Schools connect students to China." Chicago Tribune. March 2, 2003. Retrieved on February 24, 2014.
  38. ^ "Archived copy". Archived from the original on April 5, 2017. Retrieved April 4, 2017.cite web: CS1 maint: archived copy as title (link)
  39. ^ "RTA System Map" (PDF). Retrieved January 30, 2024.
  40. ^ "Endorsement: Duckworth for U.S. Senate". Daily Herald. October 8, 2022.
  41. ^ "Rob Valentino Biography". ESPN. Retrieved March 31, 2024.
[edit]
  • Village of Hoffman Estates official website

 

Various examples of ornate ceilings

A ceiling /ˈsiːlɪŋ/ is an overhead interior roof that covers the upper limits of a room. It is not generally considered a structural element, but a finished surface concealing the underside of the roof structure or the floor of a story above. Ceilings can be decorated to taste, and there are many examples of frescoes and artwork on ceilings, especially within religious buildings. A ceiling can also be the upper limit of a tunnel.

The most common type of ceiling is the dropped ceiling,[citation needed] which is suspended from structural elements above. Panels of drywall are fastened either directly to the ceiling joists or to a few layers of moisture-proof plywood which are then attached to the joists. Pipework or ducts can be run in the gap above the ceiling, and insulation and fireproofing material can be placed here. Alternatively, ceilings may be spray painted instead, leaving the pipework and ducts exposed but painted, and using spray foam.

A subset of the dropped ceiling is the suspended ceiling, wherein a network of aluminum struts, as opposed to drywall, are attached to the joists, forming a series of rectangular spaces. Individual pieces of cardboard are then placed inside the bottom of those spaces so that the outer side of the cardboard, interspersed with aluminum rails, is seen as the ceiling from below. This makes it relatively easy to repair the pipes and insulation behind the ceiling, since all that is necessary is to lift off the cardboard, rather than digging through the drywall and then replacing it.

Other types of ceiling include the cathedral ceiling, the concave or barrel-shaped ceiling, the stretched ceiling and the coffered ceiling. Coving often links the ceiling to the surrounding walls. Ceilings can play a part in reducing fire hazard, and a system is available for rating the fire resistance of dropped ceilings.

Types

[edit]
California tract home with an open-beam ceiling, 1960

Ceilings are classified according to their appearance or construction. A cathedral ceiling is any tall ceiling area similar to those in a church. A dropped ceiling is one in which the finished surface is constructed anywhere from a few inches or centimeters to several feet or a few meters below the structure above it. This may be done for aesthetic purposes, such as achieving a desirable ceiling height; or practical purposes such as acoustic damping or providing a space for HVAC or piping. An inverse of this would be a raised floor. A concave or barrel-shaped ceiling is curved or rounded upward, usually for visual or acoustical value, while a coffered ceiling is divided into a grid of recessed square or octagonal panels, also called a "lacunar ceiling". A cove ceiling uses a curved plaster transition between wall and ceiling; it is named for cove molding, a molding with a concave curve.[1] A stretched ceiling (or stretch ceiling) uses a number of individual panels using material such as PVC fixed to a perimeter rail.[2]

Elements

[edit]

Ceilings have frequently been decorated with fresco painting, mosaic tiles and other surface treatments. While hard to execute (at least in place) a decorated ceiling has the advantage that it is largely protected from damage by fingers and dust. In the past, however, this was more than compensated for by the damage from smoke from candles or a fireplace. Many historic buildings have celebrated ceilings. Perhaps the most famous is the Sistine Chapel ceiling by Michelangelo.

Ceiling height, particularly in the case of low ceilings, may have psychological impacts. [3]

Fire-resistance rated ceilings

[edit]

The most common ceiling that contributes to fire-resistance ratings in commercial and residential construction is the dropped ceiling. In the case of a dropped ceiling, the rating is achieved by the entire system, which is both the structure above, from which the ceilings is suspended, which could be a concrete floor or a timber floor, as well as the suspension mechanism and, finally the lowest membrane or dropped ceiling. Between the structure that the dropped ceiling is suspended from and the dropped membrane, such as a T-bar ceiling or a layer of drywall, there is often some room for mechanical and electrical piping, wiring and ducting to run.

An independent ceiling, however, can be constructed such that it has a stand-alone fire-resistance rating. Such systems must be tested without the benefit of being suspended from a slab above in order to prove that the resulting system is capable of holding itself up. This type of ceiling would be installed to protect items above from fire.

[edit]

See also

[edit]
  • Beam ceiling
  • Hammerbeam roof
  • Hollow-core slab
  • Moulding (decorative)
  • Popcorn ceiling
  • Scottish Renaissance painted ceilings
  • Tin ceiling
  • Passive fire protection
  • Fire test
  • Hy-Rib

References

[edit]
  1. ^ "Casa de las Ratas 2/2/2003". Archived from the original on September 29, 2008. Retrieved September 14, 2008.
  2. ^ Corky Binggeli (2011). Interior Graphic Standards: Student Edition. John Wiley & Sons. p. 220. ISBN 978-1-118-09935-3.
  3. ^ Meyers-Levy, Joan; Zhu, Rui (Juliet) (August 2007). "The Influence of Ceiling Height: The Effect of Priming on the Type of Processing That People Use". Journal of Consumer Research. 34 (2): 174–186. doi:10.1086/519146. JSTOR 10.1086/519146. S2CID 16607244.
  4. ^ Melvin, Jeremy (2006). …isme Să ÎnÈ›elegem Stilurile Arhitecturale (in Romanian). Enciclopedia RAO. p. 39. ISBN 973-717-075-X.
  5. ^ Bresc-Bautier, Geneviève (2008). The Louvre, a Tale of a Palace. Musée du Louvre Éditions. p. 26. ISBN 978-2-7572-0177-0.
  6. ^ Bresc-Bautier, Geneviève (2008). The Louvre, a Tale of a Palace. Musée du Louvre Éditions. p. 30. ISBN 978-2-7572-0177-0.
  7. ^ Bresc-Bautier, Geneviève (2008). The Louvre, a Tale of a Palace. Musée du Louvre Éditions. p. 55. ISBN 978-2-7572-0177-0.
  8. ^ Bresc-Bautier, Geneviève (2008). The Louvre, a Tale of a Palace. Musée du Louvre Éditions. p. 106. ISBN 978-2-7572-0177-0.
  9. ^ Bresc-Bautier, Geneviève (2008). The Louvre, a Tale of a Palace. Musée du Louvre Éditions. p. 138. ISBN 978-2-7572-0177-0.
  10. ^ Marinache, Oana (2015). Ernest Donaud - visul liniei (in Romanian). Editura Istoria Artei. p. 79. ISBN 978-606-94042-8-7.
[edit]
  • Media related to Ceilings at Wikimedia Commons
  • "Ceiling" . Encyclopædia Britannica. Vol. 5 (11th ed.). 1911.
  • "Ceiling" . New International Encyclopedia. 1904.
  • Merriam-Webster ceiling definition

 

 

Photo
Photo
Photo
Photo

Reviews for


Jeffery James

(5)

Very happy with my experience. They were prompt and followed through, and very helpful in fixing the crack in my foundation.

Sarah McNeily

(5)

USS was excellent. They are honest, straightforward, trustworthy, and conscientious. They thoughtfully removed the flowers and flower bulbs to dig where they needed in the yard, replanted said flowers and spread the extra dirt to fill in an area of the yard. We've had other services from different companies and our yard was really a mess after. They kept the job site meticulously clean. The crew was on time and friendly. I'd recommend them any day! Thanks to Jessie and crew.

Jim de Leon

(5)

It was a pleasure to work with Rick and his crew. From the beginning, Rick listened to my concerns and what I wished to accomplish. Out of the 6 contractors that quoted the project, Rick seemed the MOST willing to accommodate my wishes. His pricing was definitely more than fair as well. I had 10 push piers installed to stabilize and lift an addition of my house. The project commenced at the date that Rick had disclosed initially and it was completed within the same time period expected (based on Rick's original assessment). The crew was well informed, courteous, and hard working. They were not loud (even while equipment was being utilized) and were well spoken. My neighbors were very impressed on how polite they were when they entered / exited my property (saying hello or good morning each day when they crossed paths). You can tell they care about the customer concerns. They ensured that the property would be put back as clean as possible by placing MANY sheets of plywood down prior to excavating. They compacted the dirt back in the holes extremely well to avoid large stock piles of soils. All the while, the main office was calling me to discuss updates and expectations of completion. They provided waivers of lien, certificates of insurance, properly acquired permits, and JULIE locates. From a construction background, I can tell you that I did not see any flaws in the way they operated and this an extremely professional company. The pictures attached show the push piers added to the foundation (pictures 1, 2 & 3), the amount of excavation (picture 4), and the restoration after dirt was placed back in the pits and compacted (pictures 5, 6 & 7). Please notice that they also sealed two large cracks and steel plated these cracks from expanding further (which you can see under my sliding glass door). I, as well as my wife, are extremely happy that we chose United Structural Systems for our contractor. I would happily tell any of my friends and family to use this contractor should the opportunity arise!

Chris Abplanalp

(5)

USS did an amazing job on my underpinning on my house, they were also very courteous to the proximity of my property line next to my neighbor. They kept things in order with all the dirt/mud they had to excavate. They were done exactly in the timeframe they indicated, and the contract was very details oriented with drawings of what would be done. Only thing that would have been nice, is they left my concrete a little muddy with boot prints but again, all-in-all a great job

Dave Kari

(5)

What a fantastic experience! Owner Rick Thomas is a trustworthy professional. Nick and the crew are hard working, knowledgeable and experienced. I interviewed every company in the area, big and small. A homeowner never wants to hear that they have foundation issues. Out of every company, I trusted USS the most, and it paid off in the end. Highly recommend.

View GBP