Advantages of Polyurethane Foams for Void Filling

Advantages of Polyurethane Foams for Void Filling

Maintenance tips to prevent future foundation cracks and prolong the lifespan of repairs.

Detailed explanation of how polyurethane foams effectively fill voids in residential foundations. Carbon fiber reinforcement adds strength to foundation wall repair service professional slab foundation repair service houseplant.


Polyurethane foams have emerged as a highly effective solution for void filling in residential foundations, offering a range of advantages that make them superior to traditional materials. One of the primary benefits of polyurethane foams is their exceptional ability to expand and conform to the shape of any void or crack, ensuring a complete and durable seal. When injected into foundation voids, polyurethane foams rapidly expand to fill even the smallest crevices, providing a solid, load-bearing structure that reinforces the foundation.

Unlike conventional methods that may require extensive excavation and replacement of soil, polyurethane foams can be injected directly into the voids through small boreholes. This minimally invasive process not only reduces disruption to the surrounding area but also significantly cuts down on labor and material costs. Moreover, polyurethane foams cure quickly, allowing for almost immediate structural stability and enabling homeowners to resume normal activities without prolonged waiting periods.

Another advantage of polyurethane foams is their remarkable durability and resistance to moisture, chemicals, and biological organisms. This makes them an ideal choice for void filling in residential foundations, where they can withstand the test of time and various environmental conditions without deteriorating. Additionally, polyurethane foams offer excellent thermal insulation properties, which can contribute to energy efficiency by reducing heat loss through the foundation.

In summary, the use of polyurethane foams for void filling in residential foundations provides a host of advantages, including efficient expansion and conformation to voids, minimal invasiveness, rapid curing, durability, and enhanced thermal insulation. These benefits make polyurethane foams a preferred choice for foundation repair and maintenance, ensuring long-lasting stability and protection for homes.

Examination of the advantages of using polyurethane foams over traditional methods for void filling.


Certainly!

Examination of the advantages of using polyurethane foams over traditional methods for void filling is a topic of growing interest in various industries, including construction, automotive, and furniture manufacturing. Polyurethane foams have emerged as a superior alternative to conventional materials due to their unique properties and benefits.

One of the primary advantages of polyurethane foams is their exceptional flexibility and durability. Unlike traditional void fillers, which can crack or degrade over time, polyurethane foams maintain their structural integrity, offering long-lasting solutions for void filling. This resilience is particularly beneficial in environments subject to temperature fluctuations or physical stress.

Another significant advantage is the rapid curing time of polyurethane foams. Once applied, these foams expand and harden quickly, minimizing downtime and allowing for faster project completion. This efficiency can lead to substantial cost savings, especially in large-scale applications where time is a critical factor.

Polyurethane foams also provide excellent adhesion to a variety of surfaces, including wood, metal, and concrete. This strong bond ensures that the void is effectively sealed, preventing moisture infiltration and the growth of mold or mildew. In contrast, traditional methods may require additional sealants or coatings to achieve similar results.

Moreover, polyurethane foams offer superior insulation properties. Their closed-cell structure traps air, providing effective thermal and acoustic insulation. This feature is particularly advantageous in construction, where energy efficiency and soundproofing are essential considerations.

Environmental considerations also play a role in the preference for polyurethane foams. Many formulations are now available with reduced volatile organic compounds (VOCs), making them a more eco-friendly option compared to some traditional void fillers that may emit harmful chemicals.

In summary, the advantages of using polyurethane foams for void filling are manifold. Their flexibility, durability, rapid curing time, strong adhesion, insulation properties, and environmental friendliness make them a compelling choice over traditional methods. As industries continue to seek efficient and sustainable solutions, polyurethane foams are likely to become increasingly prevalent in void filling applications.

Discussion on the long-term durability and stability provided by polyurethane foams in foundation repair.


Polyurethane foams have emerged as a highly effective solution for void filling in foundation repair, offering a multitude of advantages that make them a preferred choice over traditional methods. One of the most compelling aspects of polyurethane foams is their long-term durability and stability, which play a crucial role in ensuring the structural integrity of foundations over time.

Firstly, polyurethane foams exhibit exceptional resistance to environmental factors such as moisture, temperature fluctuations, and chemical exposure. Unlike conventional materials like concrete, which can crack or erode over time due to these elements, polyurethane foams maintain their structural integrity. This resilience ensures that the filled voids remain stable, providing consistent support to the foundation and preventing future settlement issues.

Moreover, polyurethane foams expand to fill even the smallest gaps and irregularities within the voids, creating a seamless and robust bond with the surrounding soil and structural elements. This expansion not only ensures a tight fit but also enhances the load-bearing capacity of the foundation. As a result, the foundation becomes more resistant to shifting and settling, which are common problems in areas with unstable soil conditions.

Another significant advantage of polyurethane foams is their rapid curing time. Once injected, the foam expands and hardens almost immediately, allowing for quick completion of the repair process. This rapid curing minimizes the time the foundation is exposed to potential damage, thereby reducing the risk of further deterioration. Additionally, the cured foam forms a solid, impermeable barrier that prevents water infiltration, which is a major cause of foundation problems.

In terms of longevity, polyurethane foams have proven to be a durable solution. Field studies and long-term performance data indicate that polyurethane-filled voids remain stable for decades, outlasting many traditional repair methods. This longevity reduces the need for frequent maintenance and re-repairs, offering a cost-effective solution in the long run.

In conclusion, the long-term durability and stability provided by polyurethane foams in foundation repair are unparalleled. Their resistance to environmental factors, rapid curing time, and enduring performance make them an ideal choice for void filling. By ensuring a stable and robust foundation, polyurethane foams contribute to the overall safety and longevity of structures, offering both immediate and lasting benefits.

Exploration of the cost-effectiveness of polyurethane foams compared to other repair materials.


In the realm of construction and repair, the exploration of cost-effectiveness is paramount when selecting materials. Polyurethane foams have emerged as a compelling option for void filling, offering a myriad of advantages over traditional repair materials. This essay delves into the cost-effectiveness of polyurethane foams compared to other repair materials, highlighting their benefits in terms of efficiency, durability, and overall value.

Firstly, polyurethane foams stand out for their exceptional efficiency in void filling. Unlike conventional materials such as concrete or plaster, polyurethane foams expand rapidly upon application, filling even the most intricate voids and crevices with precision. This rapid expansion not only saves time during the repair process but also minimizes labor costs, as fewer applications are required to achieve a seamless finish. Moreover, the self-leveling properties of polyurethane foams ensure a uniform surface, reducing the need for additional finishing work and further enhancing cost-effectiveness.

Furthermore, the durability of polyurethane foams contributes significantly to their cost-effectiveness over the long term. Unlike traditional repair materials that may degrade or crack over time, polyurethane foams exhibit remarkable resilience to environmental factors such as moisture, temperature fluctuations, and mechanical stress. This inherent durability translates to fewer instances of repair failures and reduced maintenance costs, ultimately providing greater value to property owners and construction professionals alike.

Additionally, the versatility of polyurethane foams extends their cost-effectiveness across a wide range of applications. Whether used in structural repairs, insulation, or waterproofing, polyurethane foams offer a versatile solution that adapts to the specific needs of each project. This adaptability minimizes the need for multiple repair materials, streamlining the procurement process and lowering overall costs. Furthermore, the lightweight nature of polyurethane foams reduces transportation and handling expenses, further enhancing their cost-effectiveness in large-scale construction projects.

In conclusion, the exploration of the cost-effectiveness of polyurethane foams compared to other repair materials reveals a compelling case for their adoption in void filling applications. With their efficiency, durability, and versatility, polyurethane foams offer a cost-effective solution that delivers long-term value to both property owners and construction professionals. As the demand for sustainable and efficient repair solutions continues to grow, polyurethane foams are poised to play an increasingly prominent role in the construction industry, revolutionizing the way we approach void filling and repair.

Analysis of the environmental benefits associated with the use of polyurethane foams in residential foundation repair.


When considering the environmental benefits of polyurethane foams for residential foundation repair, several advantages emerge that highlight their suitability for sustainable construction practices.

Firstly, polyurethane foams offer exceptional insulation properties. When used for void filling in foundation repair, these foams create an effective barrier against heat transfer. This means homes retain warmth in the winter and stay cooler in the summer, leading to reduced energy consumption for heating and cooling. Lower energy usage translates directly into a smaller carbon footprint, as less fossil fuel is burned to generate the necessary energy.

Secondly, the application of polyurethane foams is highly efficient. These foams expand significantly upon application, meaning less material is required to fill voids compared to traditional methods. This reduction in material usage not only cuts down on resource consumption but also minimizes waste generation during the repair process. Moreover, the quick curing time of polyurethane foams allows for faster project completion, reducing the overall environmental impact associated with prolonged construction activities.

Additionally, polyurethane foams contribute to long-term environmental benefits through their durability. Once applied, these foams form a robust and permanent seal, effectively preventing moisture infiltration and soil erosion around the foundation. This longevity reduces the need for frequent repairs and maintenance, which in turn conserves resources and minimizes disruptions to the surrounding environment.

Furthermore, polyurethane foams are versatile and can be used in various environmental conditions, including extreme temperatures and high humidity. This adaptability ensures that foundation repairs remain effective regardless of the climate, promoting consistent environmental benefits over time.

In conclusion, the use of polyurethane foams in residential foundation repair offers significant environmental advantages. From enhanced insulation and efficient material usage to durability and versatility, these foams support sustainable construction practices while contributing to long-term environmental preservation. As the construction industry increasingly prioritizes eco-friendly solutions, polyurethane foams stand out as a valuable asset in achieving both structural integrity and environmental responsibility in foundation repair projects.

Presentation of real-life case studies showcasing successful applications of polyurethane foams for void filling in residential foundations.


Sure, here's a short essay on the advantages of polyurethane foams for void filling in residential foundations, showcasing successful real-life case studies:

---

In recent years, polyurethane foams have emerged as a revolutionary solution for void filling in residential foundations, offering a myriad of advantages over traditional methods. This essay explores the benefits of using polyurethane foams through the lens of real-life case studies, highlighting their effectiveness, efficiency, and long-term durability.

One notable case study involves a century-old home in the Midwest that had been experiencing significant foundation settling. The homeowners noticed cracks in the walls and uneven floors, indicative of voids beneath the foundation. Traditional methods, such as mud jacking, were considered but ultimately deemed too invasive and less effective. Instead, the homeowners opted for polyurethane foam injection. The results were remarkable: the foam expanded to fill the voids completely, lifting the foundation back to its original position. Within days, the cracks began to close, and the floors became level. Moreover, the polyurethane foam provided a waterproof barrier, preventing future moisture issues-a common problem in older homes.

Another compelling example comes from a coastal region where soil erosion and shifting sands posed continuous threats to residential foundations. In one particular case, a home near the shoreline suffered from severe foundation settling due to these environmental factors. Polyurethane foam was injected into the voids beneath the foundation, offering immediate stabilization. Unlike conventional methods that required extensive excavation and replacement, the foam injection was minimally invasive. The home not only regained its structural integrity but also benefited from the foam's excellent adhesion properties, which reinforced the soil and reduced the risk of future settling.

In urban areas, where space is at a premium, the efficiency of polyurethane foams shines. A high-rise apartment building in a bustling city center faced foundation issues due to the weight of added floors over the years. Traditional void filling methods would have required significant disruption to the residents and extensive construction work. Polyurethane foam injection provided a swift and effective alternative. The foam's rapid curing time meant that the foundation was stabilized within hours, allowing residents to return to their homes with minimal inconvenience. The long-term durability of the foam ensured that the foundation remained stable, even under the additional load.

These case studies underscore the advantages of polyurethane foams for void filling in residential foundations. The foam's ability to expand and adhere to surfaces ensures complete void filling and structural stabilization. Its waterproof properties protect against moisture damage, and its rapid curing time minimizes disruption. Furthermore, the long-term durability of polyurethane foams offers peace of mind to homeowners, ensuring that their foundations remain stable for years to come. As these real-life examples demonstrate, polyurethane foams represent a superior solution for addressing foundation voids, combining efficiency, effectiveness, and durability in a single, innovative product.



In geotechnical engineering, soil compaction is the process in which stress applied to a soil causes densification as air is displaced from the pores between the soil grains. When stress is applied that causes densification due to water (or other liquid) being displaced from between the soil grains, then consolidation, not compaction, has occurred. Normally, compaction is the result of heavy machinery compressing the soil, but it can also occur due to the passage of, for example, animal feet.

In soil science and agronomy, soil compaction is usually a combination of both engineering compaction and consolidation, so may occur due to a lack of water in the soil, the applied stress being internal suction due to water evaporation[1] as well as due to passage of animal feet. Affected soils become less able to absorb rainfall, thus increasing runoff and erosion. Plants have difficulty in compacted soil because the mineral grains are pressed together, leaving little space for air and water, which are essential for root growth. Burrowing animals also find it a hostile environment, because the denser soil is more difficult to penetrate. The ability of a soil to recover from this type of compaction depends on climate, mineralogy and fauna. Soils with high shrink–swell capacity, such as vertisols, recover quickly from compaction where moisture conditions are variable (dry spells shrink the soil, causing it to crack). But clays such as kaolinite, which do not crack as they dry, cannot recover from compaction on their own unless they host ground-dwelling animals such as earthworms—the Cecil soil series is an example.

Before soils can be compacted in the field, some laboratory tests are required to determine their engineering properties. Among various properties, the maximum dry density and the optimum moisture content are vital and specify the required density to be compacted in the field.[2]

A 10 tonne excavator is here equipped with a narrow sheepsfoot roller to compact the fill over newly placed sewer pipe, forming a stable support for a new road surface.
A compactor/roller fitted with a sheepsfoot drum, operated by U.S. Navy Seabees
Vibrating roller with plain drum as used for compacting asphalt and granular soils
Vibratory rammer in action

In construction

[edit]

Soil compaction is a vital part of the construction process. It is used for support of structural entities such as building foundations, roadways, walkways, and earth retaining structures to name a few. For a given soil type certain properties may deem it more or less desirable to perform adequately for a particular circumstance. In general, the preselected soil should have adequate strength, be relatively incompressible so that future settlement is not significant, be stable against volume change as water content or other factors vary, be durable and safe against deterioration, and possess proper permeability.[3]

When an area is to be filled or backfilled the soil is placed in layers called lifts. The ability of the first fill layers to be properly compacted will depend on the condition of the natural material being covered. If unsuitable material is left in place and backfilled, it may compress over a long period under the weight of the earth fill, causing settlement cracks in the fill or in any structure supported by the fill.[4] In order to determine if the natural soil will support the first fill layers, an area can be proofrolled. Proofrolling consists of utilizing a piece of heavy construction equipment to roll across the fill site and watching for deflections to be revealed. These areas will be indicated by the development of rutting, pumping, or ground weaving.[5]

To ensure adequate soil compaction is achieved, project specifications will indicate the required soil density or degree of compaction that must be achieved. These specifications are generally recommended by a geotechnical engineer in a geotechnical engineering report.

The soil type—that is, grain-size distributions, shape of the soil grains, specific gravity of soil solids, and amount and type of clay minerals, present—has a great influence on the maximum dry unit weight and optimum moisture content.[6] It also has a great influence on how the materials should be compacted in given situations. Compaction is accomplished by use of heavy equipment. In sands and gravels, the equipment usually vibrates, to cause re-orientation of the soil particles into a denser configuration. In silts and clays, a sheepsfoot roller is frequently used, to create small zones of intense shearing, which drives air out of the soil.

Determination of adequate compaction is done by determining the in-situ density of the soil and comparing it to the maximum density determined by a laboratory test. The most commonly used laboratory test is called the Proctor compaction test and there are two different methods in obtaining the maximum density. They are the standard Proctor and modified Proctor tests; the modified Proctor is more commonly used. For small dams, the standard Proctor may still be the reference.[5]

While soil under structures and pavements needs to be compacted, it is important after construction to decompact areas to be landscaped so that vegetation can grow.

Compaction methods

[edit]

There are several means of achieving compaction of a material. Some are more appropriate for soil compaction than others, while some techniques are only suitable for particular soils or soils in particular conditions. Some are more suited to compaction of non-soil materials such as asphalt. Generally, those that can apply significant amounts of shear as well as compressive stress, are most effective.

The available techniques can be classified as:

  1. Static – a large stress is slowly applied to the soil and then released.
  2. Impact – the stress is applied by dropping a large mass onto the surface of the soil.
  3. Vibrating – a stress is applied repeatedly and rapidly via a mechanically driven plate or hammer. Often combined with rolling compaction (see below).
  4. Gyrating – a static stress is applied and maintained in one direction while the soil is a subjected to a gyratory motion about the axis of static loading. Limited to laboratory applications.
  5. Rolling – a heavy cylinder is rolled over the surface of the soil. Commonly used on sports pitches. Roller-compactors are often fitted with vibratory devices to enhance their effectiveness.
  6. Kneading – shear is applied by alternating movement in adjacent positions. An example, combined with rolling compaction, is the 'sheepsfoot' roller used in waste compaction at landfills.

The construction plant available to achieve compaction is extremely varied and is described elsewhere.

Test methods in laboratory

[edit]

Soil compactors are used to perform test methods which cover laboratory compaction methods used to determine the relationship between molding water content and dry unit weight of soils. Soil placed as engineering fill is compacted to a dense state to obtain satisfactory engineering properties such as, shear strength, compressibility, or permeability. In addition, foundation soils are often compacted to improve their engineering properties. Laboratory compaction tests provide the basis for determining the percent compaction and molding water content needed to achieve the required engineering properties, and for controlling construction to assure that the required compaction and water contents are achieved. Test methods such as EN 13286-2, EN 13286-47, ASTM D698, ASTM D1557, AASHTO T99, AASHTO T180, AASHTO T193, BS 1377:4 provide soil compaction testing procedures.[7]

See also

[edit]
  • Soil compaction (agriculture)
  • Soil degradation
  • Compactor
  • Earthwork
  • Soil structure
  • Aeration
  • Shear strength (soil)
Multiquip RX1575 Rammax Sheepsfoot Trench Compaction Roller on the jobsite in San Diego, California

References

[edit]
  1. ^ Soil compaction due to lack of water in soil
  2. ^ Jia, Xiaoyang; Hu, Wei; Polaczyk, Pawel; Gong, Hongren; Huang, Baoshan (2019). "Comparative Evaluation of Compacting Process for Base Materials using Lab Compaction Methods". Transportation Research Record: Journal of the Transportation Research Board. 2673 (4): 558–567. doi:10.1177/0361198119837953. ISSN 0361-1981.
  3. ^ McCarthy, David F. (2007). Essentials of Soil Mechanics and Foundations. Upper Saddle River, NJ: Pearson Prentice Hall. p. 595. ISBN 978-0-13-114560-3.
  4. ^ McCarthy, David F. (2007). Essentials of Soil Mechanics and Foundations. Upper Saddle River, NJ: Pearson Prentice Hall. pp. 601–602. ISBN 978-0-13-114560-3.
  5. ^ a b McCarthy, David F. (2007). Essentials of Soil Mechanics and Foundations. Upper Saddle River, NJ: Pearson Prentice Hall. p. 602. ISBN 978-0-13-114560-3.
  6. ^ Das, Braja M. (2002). Principles of Geotechnical Engineering. Pacific Grove, CA: Brooks/Cole. p. 105. ISBN 0-534-38742-X.
  7. ^ "Automatic Soil Compactor". cooper.co.uk. Cooper Research Technology. Archived from the original on 27 August 2014. Retrieved 8 September 2014.

 

 

Boston's Big Dig presented geotechnical challenges in an urban environment.
Precast concrete retaining wall
A typical cross-section of a slope used in two-dimensional analyzes.

Geotechnical engineering, also known as geotechnics, is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics to solve its engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences.

Geotechnical engineering has applications in military engineering, mining engineering, petroleum engineering, coastal engineering, and offshore construction. The fields of geotechnical engineering and engineering geology have overlapping knowledge areas. However, while geotechnical engineering is a specialty of civil engineering, engineering geology is a specialty of geology.

History

[edit]

Humans have historically used soil as a material for flood control, irrigation purposes, burial sites, building foundations, and construction materials for buildings. Dykes, dams, and canals dating back to at least 2000 BCE—found in parts of ancient Egypt, ancient Mesopotamia, the Fertile Crescent, and the early settlements of Mohenjo Daro and Harappa in the Indus valley—provide evidence for early activities linked to irrigation and flood control. As cities expanded, structures were erected and supported by formalized foundations. The ancient Greeks notably constructed pad footings and strip-and-raft foundations. Until the 18th century, however, no theoretical basis for soil design had been developed, and the discipline was more of an art than a science, relying on experience.[1]

Several foundation-related engineering problems, such as the Leaning Tower of Pisa, prompted scientists to begin taking a more scientific-based approach to examining the subsurface. The earliest advances occurred in the development of earth pressure theories for the construction of retaining walls. Henri Gautier, a French royal engineer, recognized the "natural slope" of different soils in 1717, an idea later known as the soil's angle of repose. Around the same time, a rudimentary soil classification system was also developed based on a material's unit weight, which is no longer considered a good indication of soil type.[1][2]

The application of the principles of mechanics to soils was documented as early as 1773 when Charles Coulomb, a physicist and engineer, developed improved methods to determine the earth pressures against military ramparts. Coulomb observed that, at failure, a distinct slip plane would form behind a sliding retaining wall and suggested that the maximum shear stress on the slip plane, for design purposes, was the sum of the soil cohesion, , and friction , where is the normal stress on the slip plane and is the friction angle of the soil. By combining Coulomb's theory with Christian Otto Mohr's 2D stress state, the theory became known as Mohr-Coulomb theory. Although it is now recognized that precise determination of cohesion is impossible because is not a fundamental soil property, the Mohr-Coulomb theory is still used in practice today.[3]

In the 19th century, Henry Darcy developed what is now known as Darcy's Law, describing the flow of fluids in a porous media. Joseph Boussinesq, a mathematician and physicist, developed theories of stress distribution in elastic solids that proved useful for estimating stresses at depth in the ground. William Rankine, an engineer and physicist, developed an alternative to Coulomb's earth pressure theory. Albert Atterberg developed the clay consistency indices that are still used today for soil classification.[1][2] In 1885, Osborne Reynolds recognized that shearing causes volumetric dilation of dense materials and contraction of loose granular materials.

Modern geotechnical engineering is said to have begun in 1925 with the publication of Erdbaumechanik by Karl von Terzaghi, a mechanical engineer and geologist. Considered by many to be the father of modern soil mechanics and geotechnical engineering, Terzaghi developed the principle of effective stress, and demonstrated that the shear strength of soil is controlled by effective stress.[4] Terzaghi also developed the framework for theories of bearing capacity of foundations, and the theory for prediction of the rate of settlement of clay layers due to consolidation.[1][3][5] Afterwards, Maurice Biot fully developed the three-dimensional soil consolidation theory, extending the one-dimensional model previously developed by Terzaghi to more general hypotheses and introducing the set of basic equations of Poroelasticity.

In his 1948 book, Donald Taylor recognized that the interlocking and dilation of densely packed particles contributed to the peak strength of the soil. Roscoe, Schofield, and Wroth, with the publication of On the Yielding of Soils in 1958, established the interrelationships between the volume change behavior (dilation, contraction, and consolidation) and shearing behavior with the theory of plasticity using critical state soil mechanics. Critical state soil mechanics is the basis for many contemporary advanced constitutive models describing the behavior of soil.[6]

In 1960, Alec Skempton carried out an extensive review of the available formulations and experimental data in the literature about the effective stress validity in soil, concrete, and rock in order to reject some of these expressions, as well as clarify what expressions were appropriate according to several working hypotheses, such as stress-strain or strength behavior, saturated or non-saturated media, and rock, concrete or soil behavior.

Roles

[edit]

Geotechnical investigation

[edit]

Geotechnical engineers investigate and determine the properties of subsurface conditions and materials. They also design corresponding earthworks and retaining structures, tunnels, and structure foundations, and may supervise and evaluate sites, which may further involve site monitoring as well as the risk assessment and mitigation of natural hazards.[7][8]

Geotechnical engineers and engineering geologists perform geotechnical investigations to obtain information on the physical properties of soil and rock underlying and adjacent to a site to design earthworks and foundations for proposed structures and for the repair of distress to earthworks and structures caused by subsurface conditions. Geotechnical investigations involve surface and subsurface exploration of a site, often including subsurface sampling and laboratory testing of retrieved soil samples. Sometimes, geophysical methods are also used to obtain data, which include measurement of seismic waves (pressure, shear, and Rayleigh waves), surface-wave methods and downhole methods, and electromagnetic surveys (magnetometer, resistivity, and ground-penetrating radar). Electrical tomography can be used to survey soil and rock properties and existing underground infrastructure in construction projects.[9]

Surface exploration can include on-foot surveys, geologic mapping, geophysical methods, and photogrammetry. Geologic mapping and interpretation of geomorphology are typically completed in consultation with a geologist or engineering geologist. Subsurface exploration usually involves in-situ testing (for example, the standard penetration test and cone penetration test). The digging of test pits and trenching (particularly for locating faults and slide planes) may also be used to learn about soil conditions at depth. Large-diameter borings are rarely used due to safety concerns and expense. Still, they are sometimes used to allow a geologist or engineer to be lowered into the borehole for direct visual and manual examination of the soil and rock stratigraphy.

Various soil samplers exist to meet the needs of different engineering projects. The standard penetration test, which uses a thick-walled split spoon sampler, is the most common way to collect disturbed samples. Piston samplers, employing a thin-walled tube, are most commonly used to collect less disturbed samples. More advanced methods, such as the Sherbrooke block sampler, are superior but expensive. Coring frozen ground provides high-quality undisturbed samples from ground conditions, such as fill, sand, moraine, and rock fracture zones.[10]

Geotechnical centrifuge modeling is another method of testing physical-scale models of geotechnical problems. The use of a centrifuge enhances the similarity of the scale model tests involving soil because soil's strength and stiffness are susceptible to the confining pressure. The centrifugal acceleration allows a researcher to obtain large (prototype-scale) stresses in small physical models.

Foundation design

[edit]

The foundation of a structure's infrastructure transmits loads from the structure to the earth. Geotechnical engineers design foundations based on the load characteristics of the structure and the properties of the soils and bedrock at the site. Generally, geotechnical engineers first estimate the magnitude and location of loads to be supported before developing an investigation plan to explore the subsurface and determine the necessary soil parameters through field and lab testing. Following this, they may begin the design of an engineering foundation. The primary considerations for a geotechnical engineer in foundation design are bearing capacity, settlement, and ground movement beneath the foundations.[11]

Earthworks

[edit]
A compactor/roller operated by U.S. Navy Seabees

Geotechnical engineers are also involved in the planning and execution of earthworks, which include ground improvement,[11] slope stabilization, and slope stability analysis.

Ground improvement

[edit]

Various geotechnical engineering methods can be used for ground improvement, including reinforcement geosynthetics such as geocells and geogrids, which disperse loads over a larger area, increasing the soil's load-bearing capacity. Through these methods, geotechnical engineers can reduce direct and long-term costs.[12]

Slope stabilization

[edit]
Simple slope slip section.

Geotechnical engineers can analyze and improve slope stability using engineering methods. Slope stability is determined by the balance of shear stress and shear strength. A previously stable slope may be initially affected by various factors, making it unstable. Nonetheless, geotechnical engineers can design and implement engineered slopes to increase stability.

Slope stability analysis
[edit]

Stability analysis is needed to design engineered slopes and estimate the risk of slope failure in natural or designed slopes by determining the conditions under which the topmost mass of soil will slip relative to the base of soil and lead to slope failure.[13] If the interface between the mass and the base of a slope has a complex geometry, slope stability analysis is difficult and numerical solution methods are required. Typically, the interface's exact geometry is unknown, and a simplified interface geometry is assumed. Finite slopes require three-dimensional models to be analyzed, so most slopes are analyzed assuming that they are infinitely wide and can be represented by two-dimensional models.

Sub-disciplines

[edit]

Geosynthetics

[edit]
A collage of geosynthetic products.

Geosynthetics are a type of plastic polymer products used in geotechnical engineering that improve engineering performance while reducing costs. This includes geotextiles, geogrids, geomembranes, geocells, and geocomposites. The synthetic nature of the products make them suitable for use in the ground where high levels of durability are required. Their main functions include drainage, filtration, reinforcement, separation, and containment.

Geosynthetics are available in a wide range of forms and materials, each to suit a slightly different end-use, although they are frequently used together. Some reinforcement geosynthetics, such as geogrids and more recently, cellular confinement systems, have shown to improve bearing capacity, modulus factors and soil stiffness and strength.[14] These products have a wide range of applications and are currently used in many civil and geotechnical engineering applications including roads, airfields, railroads, embankments, piled embankments, retaining structures, reservoirs, canals, dams, landfills, bank protection and coastal engineering.[15]

Offshore

[edit]
Platforms offshore Mexico.

Offshore (or marine) geotechnical engineering is concerned with foundation design for human-made structures in the sea, away from the coastline (in opposition to onshore or nearshore engineering). Oil platforms, artificial islands and submarine pipelines are examples of such structures.[16]

There are a number of significant differences between onshore and offshore geotechnical engineering.[16][17] Notably, site investigation and ground improvement on the seabed are more expensive; the offshore structures are exposed to a wider range of geohazards; and the environmental and financial consequences are higher in case of failure. Offshore structures are exposed to various environmental loads, notably wind, waves and currents. These phenomena may affect the integrity or the serviceability of the structure and its foundation during its operational lifespan and need to be taken into account in offshore design.

In subsea geotechnical engineering, seabed materials are considered a two-phase material composed of rock or mineral particles and water.[18][19] Structures may be fixed in place in the seabed—as is the case for piers, jetties and fixed-bottom wind turbines—or may comprise a floating structure that remains roughly fixed relative to its geotechnical anchor point. Undersea mooring of human-engineered floating structures include a large number of offshore oil and gas platforms and, since 2008, a few floating wind turbines. Two common types of engineered design for anchoring floating structures include tension-leg and catenary loose mooring systems.[20]

Observational method

[edit]

First proposed by Karl Terzaghi and later discussed in a paper by Ralph B. Peck, the observational method is a managed process of construction control, monitoring, and review, which enables modifications to be incorporated during and after construction. The method aims to achieve a greater overall economy without compromising safety by creating designs based on the most probable conditions rather than the most unfavorable.[21] Using the observational method, gaps in available information are filled by measurements and investigation, which aid in assessing the behavior of the structure during construction, which in turn can be modified per the findings. The method was described by Peck as "learn-as-you-go".[22]

The observational method may be described as follows:[22]

  1. General exploration sufficient to establish the rough nature, pattern, and properties of deposits.
  2. Assessment of the most probable conditions and the most unfavorable conceivable deviations.
  3. Creating the design based on a working hypothesis of behavior anticipated under the most probable conditions.
  4. Selection of quantities to be observed as construction proceeds and calculating their anticipated values based on the working hypothesis under the most unfavorable conditions.
  5. Selection, in advance, of a course of action or design modification for every foreseeable significant deviation of the observational findings from those predicted.
  6. Measurement of quantities and evaluation of actual conditions.
  7. Design modification per actual conditions

The observational method is suitable for construction that has already begun when an unexpected development occurs or when a failure or accident looms or has already happened. It is unsuitable for projects whose design cannot be altered during construction.[22]

See also

[edit]
  • Civil engineering
  • Deep Foundations Institute
  • Earthquake engineering
  • Earth structure
  • Effective stress
  • Engineering geology
  • Geological Engineering
  • Geoprofessions
  • Hydrogeology
  • International Society for Soil Mechanics and Geotechnical Engineering
  • Karl von Terzaghi
  • Land reclamation
  • Landfill
  • Mechanically stabilized earth
  • Offshore geotechnical engineering
  • Rock mass classifications
  • Sediment control
  • Seismology
  • Soil mechanics
  • Soil physics
  • Soil science

 

Notes

[edit]
  1. ^ a b c d Das, Braja (2006). Principles of Geotechnical Engineering. Thomson Learning.
  2. ^ a b Budhu, Muni (2007). Soil Mechanics and Foundations. John Wiley & Sons, Inc. ISBN 978-0-471-43117-6.
  3. ^ a b Disturbed soil properties and geotechnical design, Schofield, Andrew N., Thomas Telford, 2006. ISBN 0-7277-2982-9
  4. ^ Guerriero V., Mazzoli S. (2021). "Theory of Effective Stress in Soil and Rock and Implications for Fracturing Processes: A Review". Geosciences. 11 (3): 119. Bibcode:2021Geosc..11..119G. doi:10.3390/geosciences11030119.
  5. ^ Soil Mechanics, Lambe, T.William and Whitman, Robert V., Massachusetts Institute of Technology, John Wiley & Sons., 1969. ISBN 0-471-51192-7
  6. ^ Soil Behavior and Critical State Soil Mechanics, Wood, David Muir, Cambridge University Press, 1990. ISBN 0-521-33782-8
  7. ^ Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice 3rd Ed., John Wiley & Sons, Inc. ISBN 0-471-08658-4
  8. ^ Holtz, R. and Kovacs, W. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc. ISBN 0-13-484394-0
  9. ^ Deep Scan Tech (2023): Deep Scan Tech uncovers hidden structures at the site of Denmark's tallest building.
  10. ^ "Geofrost Coring". GEOFROST. Retrieved 20 November 2020.
  11. ^ a b Han, Jie (2015). Principles and Practice of Ground Improvement. Wiley. ISBN 9781118421307.
  12. ^ RAJU, V. R. (2010). Ground Improvement Technologies and Case Histories. Singapore: Research Publishing Services. p. 809. ISBN 978-981-08-3124-0. Ground Improvement – Principles And Applications In Asia.
  13. ^ Pariseau, William G. (2011). Design analysis in rock mechanics. CRC Press.
  14. ^ Hegde, A.M. and Palsule P.S. (2020), Performance of Geosynthetics Reinforced Subgrade Subjected to Repeated Vehicle Loads: Experimental and Numerical Studies. Front. Built Environ. 6:15. https://www.frontiersin.org/articles/10.3389/fbuil.2020.00015/full.
  15. ^ Koerner, Robert M. (2012). Designing with Geosynthetics (6th Edition, Vol. 1 ed.). Xlibris. ISBN 9781462882892.
  16. ^ a b Dean, E.T.R. (2010). Offshore Geotechnical Engineering – Principles and Practice. Thomas Telford, Reston, VA, 520 p.
  17. ^ Randolph, M. and Gourvenec, S., 2011. Offshore geotechnical engineering. Spon Press, N.Y., 550 p.
  18. ^ Das, B.M., 2010. Principles of geotechnical engineering. Cengage Learning, Stamford, 666 p.
  19. ^ Atkinson, J., 2007. The mechanics of soils and foundations. Taylor & Francis, N.Y., 442 p.
  20. ^ Floating Offshore Wind Turbines: Responses in a Sea state – Pareto Optimal Designs and Economic Assessment, P. Sclavounos et al., October 2007.
  21. ^ Nicholson, D, Tse, C and Penny, C. (1999). The Observational Method in ground engineering – principles and applications. Report 185, CIRIA, London.
  22. ^ a b c Peck, R.B (1969). Advantages and limitations of the observational method in applied soil mechanics, Geotechnique, 19, No. 1, pp. 171-187.

References

[edit]
  • Bates and Jackson, 1980, Glossary of Geology: American Geological Institute.
  • Krynine and Judd, 1957, Principles of Engineering Geology and Geotechnics: McGraw-Hill, New York.
  • Ventura, Pierfranco, 2019, Fondazioni, Volume 1, Modellazioni statiche e sismiche, Hoepli, Milano
[edit]
  • Worldwide Geotechnical Literature Database

 

Photo
Photo
Photo
Photo

Reviews for


Jeffery James

(5)

Very happy with my experience. They were prompt and followed through, and very helpful in fixing the crack in my foundation.

Sarah McNeily

(5)

USS was excellent. They are honest, straightforward, trustworthy, and conscientious. They thoughtfully removed the flowers and flower bulbs to dig where they needed in the yard, replanted said flowers and spread the extra dirt to fill in an area of the yard. We've had other services from different companies and our yard was really a mess after. They kept the job site meticulously clean. The crew was on time and friendly. I'd recommend them any day! Thanks to Jessie and crew.

Jim de Leon

(5)

It was a pleasure to work with Rick and his crew. From the beginning, Rick listened to my concerns and what I wished to accomplish. Out of the 6 contractors that quoted the project, Rick seemed the MOST willing to accommodate my wishes. His pricing was definitely more than fair as well. I had 10 push piers installed to stabilize and lift an addition of my house. The project commenced at the date that Rick had disclosed initially and it was completed within the same time period expected (based on Rick's original assessment). The crew was well informed, courteous, and hard working. They were not loud (even while equipment was being utilized) and were well spoken. My neighbors were very impressed on how polite they were when they entered / exited my property (saying hello or good morning each day when they crossed paths). You can tell they care about the customer concerns. They ensured that the property would be put back as clean as possible by placing MANY sheets of plywood down prior to excavating. They compacted the dirt back in the holes extremely well to avoid large stock piles of soils. All the while, the main office was calling me to discuss updates and expectations of completion. They provided waivers of lien, certificates of insurance, properly acquired permits, and JULIE locates. From a construction background, I can tell you that I did not see any flaws in the way they operated and this an extremely professional company. The pictures attached show the push piers added to the foundation (pictures 1, 2 & 3), the amount of excavation (picture 4), and the restoration after dirt was placed back in the pits and compacted (pictures 5, 6 & 7). Please notice that they also sealed two large cracks and steel plated these cracks from expanding further (which you can see under my sliding glass door). I, as well as my wife, are extremely happy that we chose United Structural Systems for our contractor. I would happily tell any of my friends and family to use this contractor should the opportunity arise!

Chris Abplanalp

(5)

USS did an amazing job on my underpinning on my house, they were also very courteous to the proximity of my property line next to my neighbor. They kept things in order with all the dirt/mud they had to excavate. They were done exactly in the timeframe they indicated, and the contract was very details oriented with drawings of what would be done. Only thing that would have been nice, is they left my concrete a little muddy with boot prints but again, all-in-all a great job

Dave Kari

(5)

What a fantastic experience! Owner Rick Thomas is a trustworthy professional. Nick and the crew are hard working, knowledgeable and experienced. I interviewed every company in the area, big and small. A homeowner never wants to hear that they have foundation issues. Out of every company, I trusted USS the most, and it paid off in the end. Highly recommend.

View GBP